Abstract:
Evaporate thermal management systems for and methods of grazing incidence collectors (GICs) for extreme ultraviolet (EUV) lithography include a GIC shell interfaced with a jacket to form a structure having a leading end and that defines a chamber. The chamber operably supports at least one wicking layer. A conduit connects the wicking layer to a condenser system that support cooling fluid in a reservoir. When heat is applied to the leading end, the cooling fluid is drawn into the chamber from the condenser unit via capillary action in the wicking layer and an optional gravity assist, while vapor is drawn in the opposite direction from the chamber to the condenser unit. Heat is removed from the condensed vapor at the condenser unit, thereby cooling the GIC mirror shell.
Abstract:
An adjustable clip for securing a grazing-incident collector (GIC) shell to a spider having spokes is disclosed. The clip includes a base adapted to be secured to a spider spoke and having an upper surface. The clip includes a fork member having two prongs each with end pads at respective prong ends, and having a first hinge portion at an end opposite the prong ends. A hinge leaf is secured to the base upper surface and has a second hinge portion that operably engages the first hinge portion, thereby forming a hinge that allows for rotatable adjustment of the fork member relative to the base. Movement of the GIC shell when performing optical alignment is accommodated by the clip self-adjusting by its end pads moving over the GIC shell outer surface. When GIC shell alignment is achieved, the end pads are secured to the GIC shell outer surface, thereby turning the clip into a rigid support member that secures the GIC shell in place relative to the spider.
Abstract:
A process for fabricating a metallic component is disclosed. The process includes performing multiple electroforming steps on an object to form metallic layers. The process includes performing between the electroforming steps masking and patterning steps using a non-conductive material. The resulting metallic component has either a single layer or multiple layers of cooling or heat transfer channels, which may be at right angles in adjacent layers. The non-conductive material can be removed during the process by a solvent or by melting. The object on which the metallic component is formed may be a flat or shaped mandrel from which the metallic component can be removed. The metallic component is particularly useful in forming optical components for use in extreme ultraviolet (EUV) systems and in cooling and heat transfer systems.
Abstract:
An adjustable clip for securing a grazing-incident collector (GIC) shell to a spider having spokes is disclosed. The clip includes a base adapted to be secured to a spider spoke and having an upper surface. The clip includes a fork member having two prongs each with end pads at respective prong ends, and having a first hinge portion at an end opposite the prong ends. A hinge leaf is secured to the base upper surface and has a second hinge portion that operably engages the first hinge portion, thereby forming a hinge that allows for rotatable adjustment of the fork member relative to the base. Movement of the GIC shell when performing optical alignment is accommodated by the clip self-adjusting by its end pads moving over the GIC shell outer surface. When GIC shell alignment is achieved, the end pads are secured to the GIC shell outer surface, thereby turning the clip into a rigid support member that secures the GIC shell in place relative to the spider.
Abstract:
A cooled spider for grazing-incidence collectors includes an outer ring, an inner ring and spokes that mechanically and fluidly connect the inner and outer rings. Cooling channels in the outer and inner rings and in the spokes define a general cooling-fluid flow path through the spider. The general cooling-fluid flow path has input and output points located substantially 180° apart so that the flow path diverges at the input point into two branch flow paths that flow in opposite directions through the spider, and then converge at the output point. Input and output cooling fluid manifolds are fluidly connected to the outer ring at the input and output points and serve to flow cooling fluid over the cooling-fluid flow path.
Abstract:
A process for forming an article having at least one precision surface is disclosed. The process includes providing a thin sheet in contact with a surface of a mandrel. The process then includes establishing a pressure differential between opposite sides of the thin sheet using a collapsible enclosure so that the thin sheet is drawn onto the mandrel surface, thereby causing the thin sheet to substantially conform to the shape of the mandrel surface. The shaped thin sheet is then secured to a support member to define the article. The article is then removed from the mandrel. The front surface of the thin sheet defines the precision surface of the article. A process for forming a dual-sided precision article is also disclosed, along with an adaptive optical system and method that employs the precision article.
Abstract:
A three-mirror anastigmatic with at least one non-rotationally symmetric mirror is disclosed. The at least one non-rotationally symmetric mirror may be an electroformed mirror shell having a non-rotationally symmetric reflective surface formed by a correspondingly shaped mandrel.
Abstract:
A Sn vapor EUV LLP source system for EUV lithography is disclosed. The system generates a Sn vapor column from a supply of Sn liquid. The Sn column has a Sn-atom density of
Abstract:
Evaporate thermal management systems for and methods of grazing incidence collectors (GICs) for extreme ultraviolet (EUV) lithography include a GIC shell interfaced with a jacket to form a structure having a leading end and that defines a chamber. The chamber operably supports at least one wicking layer. A conduit connects the wicking layer to a condenser system that support cooling fluid in a reservoir. When heat is applied to the leading end, the cooling fluid is drawn into the chamber from the condenser unit via capillary action in the wicking layer and an optional gravity assist, while vapor is drawn in the opposite direction from the chamber to the condenser unit. Heat is removed from the condensed vapor at the condenser unit, thereby cooling the GIC mirror shell.
Abstract:
A source-collector module (SOCOMO) for generating a laser-produced plasma (LPP) that emits EUV radiation, and a grazing-incidence collector (GIC) mirror arranged relative to the LPP and having an input end and an output end. The LPP is formed using an LPP target system having a light source portion and a target portion, wherein a pulsed laser beam from the light source portion irradiates a rotating Sn rod in the target portion to generate the EUV radiation. The GIC mirror is arranged relative to the LPP to receive the EUV radiation at its input end and focus the received EUV radiation at an intermediate focus adjacent the output end. A radiation collection enhancement device having at least one funnel element may be used to increase the amount of EUV radiation provided to the intermediate focus and/or directed to a downstream illuminator. An EUV lithography system that utilizes the SOCOMO is also disclosed.