Abstract:
A method of performing a double-sided process is provided. First, a wafer having a structural pattern disposed on the front surface is provided. Following that, a plurality of front scribe lines are defined on the structural pattern, and a filling layer is filled into the front scribe lines. Subsequently, the structural pattern is bonded to a carrier wafer with a bonding layer, and a plurality of back scribe lines are defined on the back surface of the wafer. Finally, the filling layer filled in the front scribe lines is removed.
Abstract:
A method of fabricating a diaphragm of a capacitive microphone device. First, a substrate is provided, and a dielectric layer on a first surface of the substrate is formed. Than, a plurality of silicon spacers are formed on a surface of the dielectric layer, and a diaphragm layer is formed on a surface of the silicon spacers and the surface of the dielectric layer. Subsequently, a planarization layer is formed on the diaphragm layer, and a second surface of the substrate is etched to form a plurality of openings corresponding to the diaphragm layer disposed on the surface of the dielectric layer. Thereafter, the dielectric layer exposed through the openings is removed, and planarization layer is removed.
Abstract:
A method of forming a wafer backside interconnecting wire includes forming a mask layer on the back surface, the mask layer including at least an opening corresponding to the bonding pad, performing a first etching process from the back surface to remove the wafer unprotected by the mask layer to form a recess, removing the mask layer, and forming an interconnecting wire on the back surface.
Abstract:
A method of fabricating a diaphragm of a capacitive microphone device is provided. First, a substrate is provided, and a dielectric layer is formed on a first surface of the substrate. Than, a plurality of silicon spacers are formed on a surface of the dielectric layer, and the dielectric layer is patterned to form a plurality of dielectric bumps. Subsequently, a diaphragm layer is formed on a surface of the silicon spacers, a surface of the dielectric bumps, and the first surface of the substrate so that the diaphragm layer has a corrugate structure by virtue of the dielectric bumps. Thereafter, a planarization layer is formed on the diaphragm layer, and a second surface of the substrate is etched to form a plurality of openings corresponding to the corrugate structure. Following that, the dielectric bumps exposed through the openings are removed, and the planarization layer is removed.
Abstract:
A micro sample heating apparatus has a substrate, a micro heating device disposed on a first surface of the substrate, a cavity having a vertical sidewall and corresponding to the micro heating device positioned in a second surface of the substrate, and an isolation structure positioned on the second surface of the substrate. The isolation structure has an opening corresponding to the cavity, and the cavity and the opening form a sample room.
Abstract:
A cap wafer with patterned film formed thereon is etched through areas not covered by the patterned film to form a plurality of openings. Then, the cap wafer is bonded to a transparent wafer, and the cap wafer around the pattern film is segmented to form a plurality of cap structures. A device wafer with a plurality of devices and a plurality of contact pads electrically connected to the devices is subsequently provided. The cap structures and the device wafer are hermetically sealed to form a plurality of hermetic windows on the devices.
Abstract:
A packaging wafer has a plurality of cavities and a plurality of trenches on a front surface thereof. The packaging wafer is bonded to the element wafer, and a first cutting method is performed. Afterward a piece of tape is provided and is attached to the packaging wafer. Moreover, a second cutting process is performed and then the piece of tape is removed. Therefore, a wafer level package is formed. In addition, the wafer level package is divided into a plurality of individual packages.
Abstract:
A substrate is provided and a plurality of trenches are formed in the front surface of the substrate. Then, a thermal oxide layer is formed on inner walls of the trenches and the front surface of the substrate. Subsequently, a first structural layer is formed on the thermal oxide layer, dopants are implanted into the first structural layer, a second structural layer is formed on the first structural layer, and an annealing process is performed to reduce the stress of the first and second structural layers. Following that, the first and second structural layers are patterned to form diaphragms. Finally, the second structural layer is mounted on a support wafer with a bonding layer, and the back surface of the substrate is etched by deep etching techniques to form back chambers corresponding to the diaphragms. Each back chamber has a vertical sidewall and partially exposes the first structural layer.
Abstract:
A substrate having a sacrificial layer and a structural layer disposed on the front surface of the substrate is provided. Thereon an opening is formed on the back surface of the substrate and the sacrificial layer is exposed partially. A wet etching process is performed to etch the sacrificial layer via the opening to form a suspended structure. Finally, a gas injection process is performed. The gas injection process comprises blowing a gas on the suspended structure via the opening and consequently preventing the suspended structure from sticking to the substrate.
Abstract:
A micro sample heating apparatus has a substrate, a micro heating device disposed on a first surface of the substrate, a cavity having an inclined sidewall and corresponding to the micro heating device positioned in a second surface of the substrate, and an isolation structure positioned on the second surface of the substrate. The isolation structure has an opening corresponding to the cavity, and the cavity and the opening form a sample room.