Abstract:
Provided is an apparatus for generating 1-methylcyclopropene. The apparatus of the present invention may enable the immediate and convenient generation of 1-methylcyclopropene in a desired location using stable 1-methylcyclopropene precursors.
Abstract:
A thermochemical system having a reactor or a chamber for storing a reactive material capable of absorbing a gas that is taken into the reactor by a diffuser placed along the longitudinal axis of the latter. The reactive material and the gas are such that, when placed in the presence of each other, same are subjected to a reaction causing the reactive material to absorb the gas, and conversely, same are subjected to a reaction for desorbing the gas, absorbed by the reactive material, by heating applied to the latter when it has absorbed gas. The diffuser includes a gas supply mechanism, a mechanism for dispensing the gas into the reactive material, a filtration mechanism, and a heating mechanism. The various mechanisms form a sub-assembly that is attached onto the housing of the reactor by a sealing element.
Abstract:
The invention is a column contact apparatus for contacting gas with liquid in an upflow in a column container, containing two or more stages of honeycomb structural bodies in the column container in a vertical direction, a space portion formed between the respective stages of the honeycomb structural bodies and a flow-aligning portion as back-flow prevention means provided in the space portion between the respective stages such that the flow-aligning portion is not brought into contact with the honeycomb structural bodies, the flow-aligning portion including a plurality of holes with hole diameters of 0.5 mm to 8 mm.
Abstract:
A contactor for reacting a flow of gas with a liquid, comprises a vessel, a first chamber in the vessel and a second chamber in the vessel, the first and second chambers being linked only by a porous wall, and means for directing ultrasonic noise into at least one of the first and second chambers.
Abstract:
A process for producing polymer particles by polymerizing liquid droplets in a gas phase by metering a liquid comprising at least one monomer from at least one feed by means of a multitude of bores into a reaction chamber comprising the gas phase, wherein ratio of length of the feed to greatest diameter of the feed in the region of the multitude of bores is at least 10.
Abstract:
Disclosed are a process and an apparatus for synthesizing nitroalkanes by reaction of a hydrocarbon feedstock with aqueous nitric acid. Energy and capital costs may be reduced by recycling a majority of the aqueous phase back to the reactor.
Abstract:
Disclosed are a process and an apparatus for synthesizing nitroalkanes by reaction of a hydrocarbon feedstock with aqueous nitric acid. By using an isothermal reactor with multiple input ports for aqueous nitric acid, a hydrocarbon feedstock may be sequentially exposed to a plurality of flows of aqueous nitric acid as it flows through the reactor.
Abstract:
Disclosed herein is an apparatus for continuously producing and pelletizing gas hydrates. The apparatus includes a gas supply unit, a water supply unit and a reactor. Gas and water are respectively supplied from the gas supply unit and the water supply unit into the reactor. The gas and water react with each other in the reactor. The reactor includes a dual cylinder unit which forms a gas hydrate in such a way as to squeeze a slurry of reaction water formed by the reaction between the gas and water. The dual cylinder unit includes an upper cylinder, a lower cylinder and a connection pipe which connects the upper cylinder to the lower cylinder. The connection pipe has passing holes through which the reaction water in the reactor flows into and out of the connection pipe.
Abstract:
A reactor for the thermal cleavage of monofunctional and/or polyfunctional carbamic esters into the corresponding isocyanate and hydroxyl components in the liquid phase having devices for introduction of heat into the reactor, where the devices are heat exchanger plates through which a heat transfer medium flows and have a geometry defined by the ratio of the degassing area to the volume and arrangement of the heating surfaces which makes it possible for the cleavage to be carried out in a two-phase mixture which has a gas content of over 50% by volume.
Abstract:
The present invention relates to a reactor suitable for liquid-phase fluorination and provided, as heating means, with at least one element fixed to the cover so as to be immersed to the bottom of the vessel, characterized in that the parts of said reactor that are liable to be in contact with the reaction medium, other than the heating element, are coated with a tetrafluoroethylene/hexafluoropropylene copolymer and in that the part of the heating element liable to be in contact with the reaction medium is made of silicon carbide.