Abstract:
A current passing device passes current through bodies. The current passing device includes a first current receiving element having an electrical resistance, a second current receiving element having a contact resistance greater than the electrical resistance of the first current receiving element in a state in which the second current receiving element has been brought into direct contact with the first current receiving element without pressing the second current receiving element, a pressing mechanism arranged to press the first current receiving element and the second current receiving element closer together, and an electrically conductive intervening member disposed between the first current receiving element and the second current receiving element. The intervening member has a degree of deformation greater than degrees of deformation of both the first and second current receiving elements in a case where the intervening member has been pressed due to the pressing mechanism.
Abstract:
A method for the treatment of a liquid. The method comprises contacting the liquid within a treatment zone with an adsorbent material, which is then electrochemically regenerated within a regeneration zone following contact with said liquid. A disinfectant precursor species is provided within the regeneration zone and then electrochemically converted to a disinfectant species which can then contact adsorbent material and/or liquid within the regeneration zone effecting in-situ disinfection and resulting in the presence of residual disinfectant species in the treated liquid. There is further provided apparatus for carrying out such a method.
Abstract:
This disclosure relates generally to methods and rare earth-containing additives for removing target materials in the form of hydroxides, carbonates, hydrates, or oxyhydroxyls from, a typically aqueous, liquid medium.
Abstract:
Process, apparatus and article for treating an aqueous solution containing biological contaminants. The process includes contacting an aqueous solution containing a biological contaminant with an aggregate composition comprising an insoluble rare earth-containing compound to form a solution depleted of active biological contaminants. The aggregate includes more than 10.01% by weight of the insoluble rare earth-containing compound. The insoluble rare earth-containing compound can include one or more of cerium, lanthanum, or praseodymium. A suitable insoluble cerium-containing compound can be derived from a cerium carbonate, a cerium oxalate or a cerium salt. The composition can consist essentially of cerium oxides, and optionally, a binder and/or flow aid. The aggregate includes no more than two elements selected from the group consisting of yttrium, scandium, and europium when the aggregate is to be sintered. Although intended for a variety of fluid treatment applications, such applications specifically include removing or deactivating biological contaminants in water.
Abstract:
Apparatus for treating liquid by contact with a particulate adsorbent material comprises a regeneration chamber (10) within a reservoir (2) for liquid to be treated. Adsorbent material is recycled along a path including passage through the regeneration chamber (10) and in a body of liquid in the reservoir to contact and treat the liquid. The adsorbent material is capable of regeneration, and the regeneration chamber (10) is defined between two electrodes (36, 38), which can be coupled to a source of electrical power. The treatment process can be continuous with liquid flowing through the reservoir while the adsorbent material is recycled and regenerated. Alternatively, individual quantities of liquid may be treated on a batch basis. A plurality of regeneration chambers may be arranged within a common reservoir, such as in a bank of chambers aligned along an axis thereof.
Abstract:
Apparatus, process and article for treating an aqueous solution containing a chemical contaminant. The process includes contacting an aqueous solution containing a chemical contaminant with an aggregate composition comprising an insoluble rare earth-containing compound to form a solution depleted of chemical contaminants. The insoluble rare earth-containing compound can include one or more of cerium, lanthanum, or praseodymium. A suitable insoluble cerium-containing compound can be derived from a cerium carbonate, cerium oxalate and/or a cerium salt. The aggregate composition can include more than 10.01% by weight of the insoluble rare earth-containing compound, and in a particular embodiment consists essentially of one or more cerium oxides, and optionally a binder and/or flow aid. Although intended for a variety of fluid treatment applications, such applications specifically include removing or detoxifying chemical contaminants in water.
Abstract:
A treatment method of organic compounds included in waste water, comprising the steps of: supplying waste water to an adsorber 2 filled with an adsorbent 3 therein for adsorbing the organic compounds in the waste water by the adsorbent 3 in the adsorber 2, supplying a current between an anode 9 and a cathode 8 in water including an electrolyte in an electrolyzer 6 for electrolyzing the water including an electrolyte, and supplying an electrolyte resulting from electrolysis in the electrolyzer 6 to the adsorbent 3 in the adsorber 2 for contacting the electrolyte with the adsorbent 3, so that the organic compounds adsorbed by the adsorbent 3 are desorbed or decomposed.
Abstract:
An adsorbent particulate product for treating contaminated fluid and capable of electrochemical regeneration. The product includes unexpanded intercalated graphite in particulate form, in the form of flakes or in powder form.
Abstract:
A thermal preconcentrator unit and a method for concentrating chemical species. The thermal preconcentrator unit includes a thermoelectric device having a temperature controlled surface and a sorbent material configured to concentrate the chemical species. The sorbent material is disposed on and in thermal contact with the temperature controlled surface. The thermoelectric device is configured to cool and heat the temperature controlled surface to promote sorption and desorption of chemical species onto and from the sorbent material. The method provides a temperature controlled surface and exposes the chemical species to a sorbent material disposed on the temperature controlled surface to concentrate the chemical species thereon.