Abstract:
A method of coating a catalyst to a support for use in acrolein oxidation reaction. Metallic salt components of the catalyst including molybdate, vanadate and tungstate are dissolved in a liquid to form a suspension of particles of the catalyst. The precipitation of the catalyst particles is controlled by homogenizing the catalyst particles suspended in the liquid. The phase separation between the catalyst particles and the liquid can be substantially slowed down by the homogenization. Then the catalyst is coated on an inert support by applying the suspension of the catalyst particles to the support. In the suspension, the total weight of water is about 0.8 to about 5 times of the total weight of the metallic salts in the catalyst. This method of preparing suspension minimizes the amount of the liquid required to dissolve the metallic salts, which reduces the amount of time and energy to be used in evaporating the liquid from the suspension. Additionally, in obtaining catalyst from the suspension prepared by this method, it is possible to avoid the deterioration of the catalytic performance since less heat is required to evaporate the water.
Abstract:
A process and catalyst for the partial oxidation of paraffinic hydrocarbons, such as ethane, propane, naphtha, and natural gas condensates, to olefins, such as ethylene and propylene. The process involves contacting a paraffinic hydrocarbon with oxygen in the presence of a catalyst under autothermal process conditions. The catalyst comprises a Group 8B metal and, optionally, a promoter metal, such as tin or copper, supported on a fiber monolith support, preferably a ceramic fiber mat monolith. In another aspect, the invention is a process of oxidizing a paraffinic hydrocarbon to an olefin under autothermal conditions in the presence of a catalyst comprising a Group 8B metal and, optionally, a promoter metal, the metals being loaded onto the front face of a monolith support. An on-line method of synthesizing and regenerating catalysts for autothermal oxidation processes is also disclosed.
Abstract:
Pyrogenically prepared titanium dioxide doped by means of an aerosol contains an oxide from the group zinc oxide, platinum oxide, magnesium oxide and/or aluminum oxide as the doping component. It is prepared as follows: in the pyrogenic preparation of titanium dioxide, a metal salt solution is atomized to form an aerosol and injected into the production stream. The titanium dioxide may be used as a photocatalyst or as a UV adsorber.
Abstract:
This invention relates to a photocatalyst and a manufacturing method therefore, in which the adhesion to a support is increased and a baking step is simplified. The photocatalyst comprises the support and a metallic oxide layer provided on the support by applying and baking a colloidal solution including at least a metallic oxide precursor on the support, wherein the metallic oxide layer includes a high density metallic oxide layer of a less porous structure and a low density metallic oxide layer of a more porous structure.
Abstract:
A method for hydrocarbon synthesis reactions from carbon monoxide and hydrogen using a catalyst pellet which includes a solid core and a coated layer of porous support impregnated with a catalyst which optimizes the CO conversion.
Abstract:
The invention is a catalyst composition and process for making and using the catalyst composition. The catalyst composition promotes the combustion of carbon monoxide to carbon dioxide. The catalyst composition includes an effective concentration of Group VIII transition metal oxide, an effective concentration of Group IIIB transition metal oxide, an effective concentration of Group IIA alkaline earth metal oxide, and, desirably, microspheroidal alumina. The preferred Group VIII transition metal oxide is cobalt oxide. The preferred Group IIIB transition metal oxide is lanthanum oxide. The preferred Group IIA alkaline earth metal is strontium oxide. The process is for producing a combustion promotor catalyst of carbon monoxide to carbon dioxide. The carrier for the catalyst is effective in FCC units when used on a support which is other than a mullite-containing support.
Abstract:
This invention relates to methods for spraying liquid compositions containing volatile solvent by using compressed fluids, such as carbon dioxide or ethane, to form solid particulates, coating powders, and catalyst materials, which can be produced with narrow particle size distributions and can be sprayed at higher solids levels, in ambient air or with heated air applied to just the spray instead of a spray chamber. Novel catalyst supports can be produced having a beneficial morphology such as for olefin catalysis. Drier water-borne coatings can be applied to substrates by using compressed fluids to spray water-borne coating compositions having conventional water levels, thereby reducing runs and sags and shortening dry times.
Abstract:
The present invention relates to a high-performance polyoxometalate catalyst and a method of preparing the same. More particularly, the present invention provides a high-performance polyoxometalate catalyst, the activity and selectivity of which may be improved by controlling the content of vanadium and the like and which has superior reproducibility and may unsaturated carboxylic acid from unsaturated aldehyde in a high yield for a long time, a method of preparing the same, and the like.
Abstract:
Provided is a method for forming catalytic nanocoating on a metal surface. The method comprises pretreating the metal surface by means of heat treatment at 500-800° C., forming a metaloxide support, and depositing catalytic nanosized metal and/or metaloxide particles on the metaloxide support and coating the metal surface with catalytic nanosized metal and/or metaloxide particles. Further, the invention relates to a catalyst and a use.
Abstract:
The present disclosure relates to a polymer-based large-area carbon nanomesh and a method for preparing the same. More particularly, the present disclosure provides a method for preparing a carbon nanomesh such as graphene nanomesh, including: preparing a polymer nanofilm by coating a solution of a block copolymer or a polymer mixture thereof on a substrate; stabilizing the polymer nanofilm by annealing such that the polymer nanofilm is phase-separated, a hole-forming polymer is removed and, at the same time, a nanomesh-forming polymer is cyclized and forms a stabilized polymer nanomesh; and carbonizing the stabilized polymer nanomesh by annealing at high temperature to prepare a carbon nanomesh. Using the phase separation and cyclization, a large-area carbon nanomesh with superior activity can be prepared simply with high reproducibility in large scale.