Abstract:
Systems and methods achieve the conversion of polymer containing material into petroleum products such as hydrocarbon gas, wax, crude oil and diesel. The reactor and its system are designed to subject the polymer containing material to pyrolysis in a way that results in a higher petroleum product yield than conventional existing systems. The system has controls which allow for the heating temperature, rotation of the body, and throughput rate, to be adjusted depending on the reaction time required for the material inside the reactor. The condensing system is able to separate the products into the desired petroleum products by percentage output ranging from wax to crude-like oil to diesel-quality oil.
Abstract:
Provided are a method for producing sodium tungstate by supplying an oxidant made of sodium nitrate or sodium nitrite to bring a tungsten containing material and the oxidant into contact with each other in an atmosphere containing oxygen to thereby continuously produce a reaction product; a method for collecting tungsten using the method; and an apparatus for producing sodium tungstate. Also provided are a method for producing a sodium tungstate aqueous solution in which a reductant is introduced into a melt containing the above-described reaction product which is then dissolved in water; and a method for collecting tungsten using the method.
Abstract:
A differential kinetic test unit tests chemical reaction parameters. Reaction media is inserted into a vessel through a reactant feed conduit. A reaction outlet mechanism removes liquid and vapor reaction components from the vessel. A motor rotates a reaction shaft which extends into the reaction media within the vessel. A mixing impeller is fixed to the reaction shaft and is positioned within the reaction media. A catalyst frame positions a catalyst container holding a catalyst with the catalyst container being immersed in the reaction media. Reaction media is drawn through the catalyst and the reacted media is passed through the reaction outlet mechanism for testing of the chemical reaction parameters.
Abstract:
A method of producing nanostructures by supplying particulate solid and gaseous reactants to a reactor, heating the reactor to an elevated temperature and causing relative movement of the solid reactants such as to promote the growth of nanostructures. A high temperature reactor for performing the method includes a reactor chamber having an inlet and an outlet, multiple drums for accommodating solid reactant material, a drive system that causes rotation of the drums and a heating system for heating the chamber.There is also disclosed a method of producing Silicon Nitride nanostructures by supplying solid reactants to a reactor including a carbon source and SiO2, supplying reactant gas to the reactor and maintaining a reactant gas flow rate so as to achieve a desired dwell time and heating the reactor to an elevated temperature.
Abstract:
A reactor is provided for the preparation of modified bitumen, which reactor comprises a horizontal housing comprising a cylindrical wall and two side walls, wherein a bitumen inlet has been provided at or near one of the side walls of the housing and a bitumen product outlet has been provided at or near the opposite side wall of the housing, wherein a plurality of inlets for the provision of oxygen-containing gas has been provided in the cylindrical wall of the housing between the bitumen inlet and the bitumen product outlet, which multi-purpose reactor is further provided with a mixer arranged inside the housing comprising at least one rotor rotating within at least one stator having a plurality of openings. Also there is provided a process for the preparation of modified bitumen, which comprises contacting bitumen at elevated temperature and pressure with a modifier in a reactor as herein described.
Abstract:
The invention relates to a multi-level furnace for thermal treatment of the material flow which has at least two process chambers arranged one above another, each providing at least two level floors, and is equipped with one or more transfer devices for transferring the treated material flow from an upper process chamber to a lower process chamber. In order to separate the two process chambers in terms of gas flow, the transfer device has means for forming a material column in the transition region between the upper and the lower process spaces, wherein said means for forming a material column comprise at least one conveying unit or at least one chute, and the at least one conveying unit or at least one chute also forms a material removal device for the upper process chamber and/or a material input device for the lower process chamber.
Abstract:
A method for pretreating a biomass, in which a water-reactive anhydride contacts a biomass, is disclosed. The biomass is pretreated using internal heating by an exothermic reaction. Further, an apparatus for pretreating a biomass having a reaction part including an inlet part and an outlet part for the water-reactive anhydride is disclosed.
Abstract:
An apparatus for microwave assisted solid phase synthesis using solid-phase resin beads mixed with a liquid solvent comprising a generally cylindrical reactor made of microwave transparent material and having a central axis, the reactor having an inlet and an outlet; a porous frit associated with the outlet of the reactor, the porous frit preventing discharge of beads and allowing discharge of the solvent from the reactor; and means for concentric rotation of the reactor around the central axis in alternating clockwise and anti-clockwise directions. A method for microwave assisted solid phase synthesis using the apparatus is also disclosed.
Abstract:
System and relative process for the complete and high-productivity hydroconversion of heavy oils essentially consisting of a solid accumulation reactor and a stripping section of the conversion products outside or inside the reactor itself.In particular, the system proposed consists of a solid accumulation hydroconversion reactor in which the solids deriving from and generated by the feedstock treated (metals in the form of sulphides and coke) are accumulated, up to very high levels, and a hot gas stripping section of the reaction liquid, designed in relation to the type of reactor adopted, for the direct and continuous removal of the conversion products, including high-boiling products.
Abstract:
A method and apparatus for method of continuously producing 1,1,1,2,3-pentafluoropropane with high yield is provided. The method includes (a) bringing a CoF3-containing cobalt fluoride in a reactor into contact with 3,3,3-trifluoropropene to produce a CoF2-containing cobalt fluoride and 1,1,1,2,3-pentafluoropropane, (b) transferring the CoF2-containing cobalt fluoride in the reactor to a regenerator and bringing the transferred CoF2-containing cobalt fluoride into contact with fluorine gas to regenerate a CoF3-containing cobalt fluoride, and (c) transferring the CoF3-containing cobalt fluoride in the regenerator to the reactor and employing the transferred CoF3-containing cobalt fluoride in Operation (a). Accordingly, the 1,1,1,2,3-pentafluoropropane can be continuously produced with high yield from the 3,3,3-trifluoropropene using a cobalt fluoride (CoF2/CoF3) as a fluid catalyst, thereby improving the reaction stability and readily adjusting the optimum conversion rate and selectivity.