Abstract:
A porous aluminum body having high porosity and a manufacturing method therefor are provided, wherein the porous aluminum body can be manufactured by continuous manufacturing steps. In the present invention, this porous aluminum body includes a plurality of aluminum fibers connected to each other. The aluminum fibers each have a plurality of columnar protrusions formed at intervals on an outer peripheral surface of the aluminum fibers, the columnar protrusions protruding outward from the outer peripheral surface. Adjacent aluminum fibers are integrated with the aluminum fibers and the columnar protrusions.
Abstract:
A system for treatment of atomized powder including a fluidized bed operable to treat feedstock alloy powders. A method of treating atomized powder including communicating an inert gas into a fluidized bed; communicating an atomized powder into the fluidized bed; and heating the atomized powder in the fluidized bed, eject the treated powders out of the fluidized bed to quench the powders.
Abstract:
A method for producing a substantially spherical metal powder is described. A particulate source metal includes a primary particulate and has an average starting particle size. The particulate source metal is optionally ball milled and mixed with a binder in a solvent to form a slurry. The slurry is granulated to form substantially spherical granules, wherein each granule comprises an agglomeration of particulate source metal in the binder. The granules are debinded at a debinding temperature to remove the binder from the granules forming debinded granules. The debinded granules are at least partially sintered at a sintering temperature such that particles within each granule fuse together to form partially or fully sintered solid granules. The granules can then be optionally recovered to form a substantially spherical metal powder.
Abstract:
A novel ligated reagent complex is provided. The ligated reagent includes at least one zero-valent atom, whether metal, metalloid, or non-metal, in complex with at least one hydride molecule and at least one nitrile compound. The ligated reagent complex can be useful in the synthesis of nanoparticles. Also provided is a method for preparing a ligated reagent complex. The method includes a step of ball-milling a mixture that includes a preparation containing a zero-valent element, a hydride molecule, and a nitrile compound.
Abstract:
Methods are provided for producing alloy forms from alloys containing one or more extremely reactive elements and for fabricating a component therefrom. The fabricating method comprises substantially removing a reactive gas from the fabrication environment. An alloy form of the alloy is formed. The alloy form is formed by melting the alloy or by melting one or more base elements of the alloy to produce a molten liquid and introducing the one or more extremely reactive elements into the molten liquid. The molten alloy is shaped into the alloy form. The component is formed from the alloy form. If the one or more extremely reactive elements are introduced into the molten liquid, such introduction occurs just prior to the shaping step.
Abstract:
A method of manufacturing a shroud segment, including separately molding at least first and second parts by powder injection molding. The first part has an inner surface and at least one fluid passage in communication with the inner surface. The second part has an outer surface complementary to the inner surface of the first part. At least one of the inner and outer surfaces is formed to define a plurality of grooves. A plurality of cooling passages in fluid communication with the at least one fluid passage are defined with the plurality of grooves by interconnecting the inner and outer surfaces while the first and second parts remain in a green state. The interconnected parts are debound and sintered to fuse the parts to define at least a portion of the shroud segment including the cooling passages.
Abstract:
An additive manufacturing apparatus comprises a processing chamber (100) defining a window (110) for receiving a laser beam and an optical module (10) The optical module is removably-mountable to the processing chamber for delivering the laser beam through the window. The optical module contains optical components for focusing and steering the laser beam and a controlled atmosphere can be maintained within the module.
Abstract:
A method for manufacturing a NdFeB rare earth permanent magnet containing Ce whose raw material includes a Ce-LR-Fe—B-Ma alloy, a Ce-HR-Fe—B-Mb alloy, and metallic oxide micro-powder; wherein the LR at least includes Nd and Pr, and the LR does not include Ce; wherein the HR at least includes Dy or Tb, and the HR does not include Ce; wherein the Ma is selected from a group consisting of Al, Co, Nb, Ga, Zr and Cu; wherein the Mb is selected from a group consisting of Al, Co, Nb, Ga, Zr, Cu and Mo; includes steps of: melting the Ce-LR-Fe—B-Ma alloy, melting the Ce-HR-Fe—B-Mb alloy, providing hydrogen decrepitating, adsorbing with the metallic oxide micro-powder and powdering, providing magnetic field pressing, sintering and ageing, for forming a NdFeB rare earth permanent magnet.
Abstract:
An inert anode for Al electrolysis, made of Cu—Ni—Fe—O based materials, comprising Fe in a range between about 10 and 20% by weight, Cu in a range between about 60 and about 80% by weight, Ni in a range between about 20 and about 30% by weight, and oxygen in a range between about 1 and about 3% by weight, and a method for producing the anode, comprising mechanically alloying metallic elements; oxygen doping; and consolidation.
Abstract:
A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. Bodies made from the dispersion strengthened solidified particles exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures.