Abstract:
The present disclosure provides various embodiments of a multicopter-assisted launch and retrieval system generally including: (1) a multi-rotor modular multicopter attachable to (and detachable from) a fixed-wing aircraft to facilitate launch of the fixed-wing aircraft into wing-borne flight; (2) a storage and launch system usable to store the modular multicopter and to facilitate launch of the fixed-wing aircraft into wing-borne flight; and (3) an anchor system usable (along with the multicopter and a flexible capture member) to retrieve the fixed-wing aircraft from wing-borne flight.
Abstract:
This invention relates to an Unmanned Aerial Vehicle hereinafter called “Mother UAV” member (11) capable of carrying modules of Sub Unmanned Aerial Vehicle members (12) hereinafter called “Sub UAV” member. More particularly, the method and system that is capable of communicating via satellite and remote control technology wherein ejecting said Sub UAV members (12) from the Mother UAV member (11) wherein Sub UAV members (12) autonomously fly in sequence in a coordinated manner with the Mother UAV member (11), and capable of engaging in multiple missions in high, medium, low altitude, and surface, also communication with under sea submarines (27). Further, comprises of a method and system that the Sub UAV members (12) are able to return back to the Mother UAV member (11) after the mission is completed and be firmly secured to the flatbed (14) of the Mother UAV member (11). The present invention is specifically designed for multifunctional and multipurpose applications where humans and other vehicles are unable to access, for civil, commercial and military purposes.
Abstract:
An aircraft system incorporates a first aircraft having a grappling device including a first gripper with a first actuator and a second gripper with a second actuator. The first gripper and the second gripper are movable between an open and a closed position to engage a hooking device and pivot together to change a capture angle. A first controller receives a command and operates the actuators in response to open and close the first and second grippers of the grappling device. The controller also receives a second command and operates the first and second actuators to pivot the grippers and provide grappling at a range of capture angles. A second aircraft, which may be a UAV, incorporates the hooking device. The hooking device includes a ring rotatable from the surface and a third actuator to rotate the ring between a stowed and an extended position.
Abstract:
A micro-unmanned aerial vehicle deployment system is provided for a cruise missile having submunition compartments. The system includes a vehicle launch module releasable from the cruise missile submunition compartment. The vehicle launch system has a control circuit and at least one micro-unmanned aerial vehicle contained therein. Structure is provided in the launch module for deploying the micro-unmanned aerial vehicle. A separable tether can be joined between the cruise missile and the vehicle launch module that separates when subjected to tension after deployment of the vehicle launch module.
Abstract:
The proposed advanced multi-level protective system comprises two types of barriers, harmoniously complementing to each other: a portable barrier for the protection of individual houses at the height of the floods up to 0.8-0.9 meters, and more powerful protective quick-installable barriers, suitable for mechanized installation and resistant to higher water flows up to 1.2-2 meters. The proposed advanced protective system comprises a number of additional means capable of weakening against dangerous natural processes that give rise strong water flows, and these means can weaken these flows and increase the efficiency of proposed protective barriers.
Abstract:
Systems and/or methods for forming a multiple-articulated flying system (skybase) having a high aspect ratio wing platform, operable to loiter over an area of interest at a high altitude are provided. In certain exemplary embodiments, autonomous modular flyers join together in a wingtip-to-wingtip manner. Such modular flyers may derive their power from insolation. The autonomous flyers may include sensors which operate individually, or collectively after a skybase is formed. The skybase preferably may be aggregated, disaggregated, and/or re-aggregated as called for by the prevailing conditions. Thus, it may be possible to provide a “forever-on-station” aircraft.
Abstract:
The present invention provides a system for reconnaissance using autonomous unmanned airborne vehicles (UAV). The system comprises a mothership, which is generally a fixed wing fuel tank capable of providing a suitable surface for flight (lift) and one or more elements for attachment of individual UAVs. The system further comprises one or more UAVs that are detachably connected to the mothership, and which are independently controllable for reconnaissance and tracking. The system and its individual parts are reusable and independently controllable, permitting low cost reconnaissance over wide areas of geography.
Abstract:
Methods and systems are provided which may allow a first vehicle to recover a second air vehicle while both are moving. The first vehicle and the second air vehicle may be traveling at different velocities. An attachment member of the second air vehicle may attach to a recovery member of the first vehicle while the first vehicle and the second air vehicle are traveling at different velocities. The recovery member attached to the second air vehicle may move relative to and along an exterior surface of the first vehicle in a direction substantially parallel to a direction of travel of the first vehicle.
Abstract:
Various measures (for example methods, UAVs, controllers and computer programs) are provided in relation to controlling a UAV. The UAV is caused to provide energy to and receive energy from a given vehicle. The received energy is used to provide power to at least one component of the UAV.
Abstract:
Embodiments of the present invention provide an apparatus comprising a body including a cavity for storing one or more packages, and a conveyor belt disposed above a top surface of the body. The belt is shaped to receive one or more packages, and the belt is controllable to rotate a package placed on the belt either from the top surface to the cavity for storage or from the cavity to the top surface for dispatch. A package comprises at least one of a drone and a payload transported by the drone. The apparatus further comprises a landing mechanism for stabilizing a drone landing on the apparatus.