Abstract:
An elevator system includes a device for obtaining an indication of a heavy object to be transported with the elevator system; a device for allocating an elevator car to transport the heavy object; and a device for activating, in response to the indication, at least one pre-emptive action associated with the allocated elevator car in an adjustment mode. The adjustment mode is configured to substantially maintain a vertical position of the elevator car in an elevator shaft when the heavy object is loaded into the elevator car.
Abstract:
Disclosed is an elevator system including a controller, wherein the controller is configured for: engaging in a first communication with a facial recognition system that identifies a pet and a first person as owner of the pet, and rendering a plurality of determinations from the first communication, including: a first determination that the pet is proximate a first elevator lobby in a building, a second determination to provide instructions to a first elevator car responsive to the first communication, and engaging in a second communication with the first elevator car for effecting the second determination.
Abstract:
An elevator control system for controlling a plurality of elevators in an elevator bank includes a processor in communication with a non-transitory memory, and a networking device. The processor executes software instructions that cause the elevator control system to receive an elevator call placed by at least one of a user and a mobile device of the user. The elevator control system wirelessly communicates with the mobile device to determine an elevator criteria set by the user on the mobile device via an elevator control application. The elevator criteria comprises a preference and a requirement. The software instructions allow the processor to determine whether an elevator in the elevator bank meets the requirement and the preference, and an elevator that meets at least the requirement is automatically assigned to the user.
Abstract:
A method and system for providing destination dispatch in an elevator control system, includes identifying a user, retrieving a user profile associated with the user, receiving a destination request associated with the user, analyzing the user profile and the destination request, determining a plurality of assignments, identifying a preferred assignment of the plurality of assignments, and prompting the user to opt-out of the preferred assignment.
Abstract:
The present invention relates to the technical field of elevator control, and provides an elevator system capable of monitoring children use and a control method thereof. The elevator system of the present invention includes: an elevator control system; an RGB-D sensor or an intelligent wearable device; and an information analytic processing apparatus. The elevator system and control method thereof in the present invention is accurate, reliable and safe when monitoring the situation of children using the elevator.
Abstract:
An elevator control system for controlling a plurality of elevators in an elevator bank comprises a processor in communication with a non-transitory memory, and a networking device. The processor executes software instructions that cause the elevator control system to receive an elevator call placed by at least one of a user and a mobile device of the user. The elevator control system wirelessly communicates with the mobile device to determine an elevator criteria set by the user on the mobile device via an elevator control application. The elevator criteria comprises a preference and a requirement. The software instructions allow the processor to determine whether an elevator in the elevator bank meets the requirement and the preference, and an elevator that meets at least the requirement is automatically assigned to the user.
Abstract:
An exemplary elevator input device includes a passenger interface configured to allow a passenger to place a call to indicate a desired elevator service. The elevator input device includes a controller configured to interpret any passenger input regarding desired elevator service. The controller identifies which of a plurality of elevator cars will be able to provide the desired elevator service according to a predetermined criterion. The plurality of elevator cars considered by the controller includes every elevator car that is capable of serving the call. The controller is also configured to assign the call to the identified elevator car. With the input device controller assigning the call to an identified elevator car, the dispatching of elevator cars is distributed among controllers of input devices rather than being accomplished at a single group controller.
Abstract:
A method of allocating calls of a lift installation with at least one lift and at least one car per lift to move passengers in a journey from at least one input floor to at least one destination floor, a system for executing the method and a computer readable memory with instructions for executing the method. The method includes receiving input calls from passengers travelling from an input floor to a destination floor, each call identifying at least one floor as an input floor or a destination floor. A start zone with identified input floors and a destination zone with identified destination floors are determined from the input calls and destination calls. Each identified floor within a corresponding zone is considered using at least one selection criterion and a stopping floor is selected which satisfies the criterion. The car is caused to stop at fewer than all the identified input floors and identified destination floors during the journey.
Abstract:
An elevator system having a double or multiple elevator cabins per elevator shaft can be controlled using a method, wherein at least one destination call is entered or at least one identification code is received on at least one call entry floor, said destination call or identification code designating an arrival floor; wherein at least one trip by at least one elevator cabin of the double or multiple elevator cabin from a departure floor to an arrival floor is determined for the destination call or identification code; wherein before determining a trip, it is determined whether at least one situation-specific parameter is fulfilled; and if said situation-specific parameter is fulfilled, at least one situation-compatible call assignment is determined for a trip having a floor difference of zero between the call entry floor and the departure floor or having a floor difference of zero between the destination floor and the arrival floor.
Abstract:
An elevator system includes at least one elevator, at least one call input device and a call controller. The call input device transmits a call to the call controller. For a transmitted normal operation signal, at least one elevator car of an assigned elevator is activated to drive to the call input floor by at least one elevator controller of the assigned elevator. In a peak-time mode of the elevator system, at least one main operation signal is transmitted to at least one elevator. For a main operation signal transmitted to an elevator, at least one elevator car of said elevator is activated to drive between at least two main operation floors by at least one elevator controller of said elevator.