Abstract:
An optical fiber comprises a photosensitive core that includes a concentration of a first material that increases the refractive index of the core and a concentration of a second material that is other than boron and that reduces the refractive index of the core. A cladding is disposed about the core for tending to confine light to the core. The fiber also includes at least one longitudinally extending region having a thermal coefficient of expansion that is different from the thermal coefficient of expansion of the cladding. In another embodiment, the core includes a concentration of germanium and a concentration of boron. Also disclosed is a polarization-maintaining double-clad (PM DC) fiber comprising one or both of at least one circular axially extending stress inducing region(s) and an inner cladding comprising a circular outer perimeter. Fibers according to the invention can include a rare earth dopant for emitting light of a selected wavelength responsive to being pumped by pump light of a pump wavelength that is different than the selected wavelength.
Abstract:
The present invention concerns a preform for an optical fiber, an optical fiber so obtained and methods for making the same. The fiber is characterized in that porous glass doped with at least one dopant is used. Resulting fibers can be used to make high attenuation fibers.
Abstract:
A borosilicate glass composition comprises SiO2 having a concentration of about 40 mole percent to about 60 mole percent, B2O3 having a concentration of about 10 mole percent to about 30 mole percent, and an alkaline earth and/or alkali compound having a concentration of 10 mole percent to about 40 mole percent. An optical fiber amplification device comprises a borosilicate glass material cladding. The core comprises a germanate glass material doped with Tm3+. The germanate glass material has a first surface configured to receive an optical signal having a wavelength of from about 1400 nm to about 1540 nm and a second surface configured to output an amplified optical signal. In this manner, low cost fiber amplifiers in the 1450-1530 nm wavelength region (corresponding to the S-band) can be achieved.
Abstract:
A method that provides a new way to embed rare earth fluorides into silicate (or germania-doped silica) glasses by means of solution chemistry. Embedding rare earth fluorides into a silicate (or germania-doped silica) glass comprises the following steps. First, form a porous silicate core preform. Second, submerge the preform into an aqueous solution of rare earth ions. Third, remove the preform from the solution and wash the outside surfaces of the preform. Fourth, submerge the preform into an aqueous solution of a fluorinating agent to precipitate rare earth trifluorides from the solution and deposit in the pores or on the wall of the preform. This is followed by drying.
Abstract:
A method for fabricating an optical waveguide, comprising the following steps. That is, forming an optical waveguide on surface of a substrate via an atmospheric pressure chemical vapor deposition (AP-CVD) method using a silica raw material containing an organic material, and irradiating ultraviolet light on at least a portion of that optical waveguide. The refractive index of the portion of the optical waveguide irradiated with ultraviolet light increases. Since changing the refractive index in this way enables the formation of a diffraction grating, it is possible to manufacture optical filters and wavelength dispersion devices.
Abstract:
The present invention is directed at a method and device for manufacturing a preform. The method involves arranging a starting body within a channel as defined by a vessel. Then, the channel is supplied with a reactive gas containing a coating material precursor. A resonator then generates a plasma zone within the channel. The starting body is aligned in the channel such that the plasma zone concentrically surrounds the starting body. The axial movement of the resonator relative to the starting body is controlled such that a desired layer of coating material precursor reactively deposits on the starting body to form the preform. The method suppresses deposition on the inside of the vessel via suppressing means, which may involve inducing nodes in the E-field at the vessel walls, or using an suppressing gas on the inner surface of the vessel, or a combination of the two. The present invention is also directed at a device to facilitate the aforementioned method.
Abstract:
According to the present invention, a preform (7) for an optical fiber is made from a tube having a substrate layer (16) of fluorine-doped silica and a support layer (18) of non-doped silica. A cladding layer (8) of fluorine-doped silica and a core layer (10) of non-doped silica are formed on the inside surface of the tube by chemical vapor phase deposition. The optical fiber is subsequently obtained by collapsing the tube and drawing it. The invention is applicable to fabricating optical fibers.
Abstract:
This invention relates to the production of high purity fused silica glass through oxidation or flame hydrolysis of a vaporizable silicon-containing compound. More particularly, this invention is directed to the use of vaporizable, halide-free compounds in said production. In the preferred practice, a polymethylsiloxane comprises said vaporizable, halide-free compound.
Abstract:
An improved method of forming porous glass preforms by generating glass particles from a vapor phase and applying the particles onto a substrate characterized by generating the glass particles from a vapor phase in a separate operation, collecting the particles and then subsequently applying the previously collected particles onto a deposition surface of the substrate by creating a hot zone adjacent the deposition surface and projecting the particles as a stream through the hot zone and onto the deposition surface.
Abstract:
A method is disclosed for making an optical fiber by drawing a preform whose fabrication involves deposition of a glass on a substrate by means of a chemical reaction between gaseous reagents. According to the disclosed method, accurately controlled amounts of a gaseous reagent are produced by flash evaporating a metered flow of a liquid reagent. The disclosed method is of particular interest for the industrial production of optical fibers.