Abstract:
A method for foming glass articles of substantial thickness from unstable glass compositions which normally devitrify when formed by conventional casting or molding processes, is disclosed. The method includes the steps of quench-cooling the glass to form a crystal-free glass feedstock material, and then pressure-consolidating the feedstock at a temperature between the transition temperature and the crystallization temperature of the glass.
Abstract:
Non-oxide or heavy metal fluoride glass optical fiber with or without a cladding and coated with an outer layer of an oxide glass having a glass transition temperature of less than 400.degree. C. and a thermal expansion coefficient of less than about 19.times.10.sup.-6 .degree. C..sup.-1. Also, a method of making and providing such coatings on non-oxide or fluoride glass, and fiber optic products prepared by such methods.
Abstract:
A method of manufacturing glass for an optical transmission body includes the steps of precipitating an oxide of a glass forming element by the hydrolysis reaction of a halogen compound of the glass forming element in the liquid phase, adding phosphoric acid to the precipitate to produce a phosphate, removing the water from the phosphate and vitrifying the phosphate by heating.
Abstract:
RAW MATERIALS FOR A FLUOROPHOSPHATE OPTICAL GLASS ARE MELTED IN A NON-OXIDIZING ATMOSPHERE, AND IN PARTICULAR, IN A NITROGEN GAS ATOOSPHERE OR IN A COVERED MELTING VESSEL.
Abstract:
Embodiments of the invention relate to a hydrogen-resistant optical fiber with a core having a central axis. The core may include only silica, or only silica and fluorine, while a cladding region surrounding the core may be made of silica and fluorine, along with at least one of germanium, phosphorus, and titanium.
Abstract:
To provide a wavelength conversion member having good surface accuracy and dimensional accuracy even when processed in various shapes, and a method for manufacturing the same. A method for manufacturing a wavelength conversion member, including the steps of: subjecting a preform made of a powder mixture containing a glass powder and an inorganic phosphor powder to heat treatment, thereby obtaining a sintered powder product; and re-press molding the sintered powder product with a die.
Abstract:
Optical components that maintain transparency (remain clear) in high energy environments, including in applications of high-intensity gamma-ray radiation dosage of 1.29×109 rads and greater, and neutron energy at neutron fluxes ranging from 3×109 to 1×1014 n/cm2 sec and greater, and fluencies ranging from 2×1016 to 8.3×1020 n/cm2 and greater. Further, the optical components have a bulk laser damage threshold of 105+/−20 J/cm2, a surface laser damage threshold of 72+/−15 J/cm2, a Stokes shift of about 9%, and a fractional thermal loading of about 11%.
Abstract translation:在高能环境中保持透明度(保持清晰)的光学部件,包括在1.29×10 9 rad以上的高强度伽马射线辐射剂量的应用中,以及在中子通量范围为3×10 9〜1×10 14 n的中子能 / cm 2·sec以上,流量范围为2×10 16〜8.3×10 20 n / cm 2以上。 此外,光学部件具有105 +/- 20J / cm 2的体激光损伤阈值,72 +/- 15J / cm 2的表面激光损伤阈值,约9%的斯托克斯偏移和约9%的分数热负荷 约11%。
Abstract:
Optical devices and a method for manufacturing these devices. One optical device includes a core region having a first medium of a first refractive index n1, and includes a cladding region exterior to the core region. The cladding region includes a second medium having a second refractive index n2 higher than the first refractive index n1. The cladding region further includes a third medium having a third refractive index n3 lower than the first refractive index n1. The third medium is dispersed in the second medium to form a plurality of microstructures in the cladding region. Another optical device includes a plurality of core regions including at least one core having a doped first medium, and includes a cladding region exterior to the plurality of core regions. The core regions and the cladding region include a phosphate glass.
Abstract:
A photonic band gap fiber and method of making thereof is provided. The fiber is made of a non-silica-based glass and has a longitudinal central opening, a microstructured region having a plurality of longitudinal surrounding openings, and a jacket. The air fill fraction of the microstructured region is at least about 40%. The fiber may be made by drawing a preform into a fiber, while applying gas pressure to the microstructured region. The air fill fraction of the microstructured region is changed during the drawing.
Abstract:
A process for producing a high-quality glass from highly reactive raw materials and a glass-melting apparatus for use therewith, comprising the step of charging a material for the glass to a molten glass in a heated vessel, (1) wherein an oxidizing gas is bubbled in the molten glass and a glass raw material that behaves as a reducing agent during being melted is charged into a position of the bubbling or (2) said vessel is filled with a dry ambient gas and while the ambient gas is allowed to flow to a liquid surface of the molten glass along an charging route of the glass raw material, the glass raw material is charged.