Abstract:
Disclosed is a water absorbent comprising particles of a water absorbent polymer whose surface is associated with a water insoluble metal phosphate. It possesses an improved performance profile comprising high absorption capacity, improved fluid transportation performance and a faster swell rate.
Abstract:
A vibration damping silicone composition with excellent long term storage stability and vibration damping ability contains as components (A) a silicone oil, (B) hollow particles of an organic resin having an inorganic material powder supported on its surfaces, and (C) a solid inorganic material powder.
Abstract:
The present invention relates to a polymer nanocomposite and the process for preparation of the same, wherein a positive-electric polyelectrolyte, a layer-structured inorganic material, such as silicate clay, and a polymer latex comprising an negative-electric surface are nullco-agglutinatednull to result in a polymer nanocomposite.
Abstract:
A method of incorporating nanoparticles into a contact lens includes contacting the contact lens with a solvent sufficient to remove liquid from the contact lens and contacting the contact lens with colloidal nanoparticles sufficient to transfer nanoparticles from the colloidal nanoparticles to the contact lens.
Abstract:
A method of incorporating nanoparticles into a contact lens includes contacting the contact lens with a solvent sufficient to remove liquid from the contact lens and contacting the contact lens with colloidal nanoparticles sufficient to transfer nanoparticles from the colloidal nanoparticles to the contact lens.
Abstract:
Process for the impregnation of a polymer substrate including at least one polymer, which comprises putting said polymer substrate in contact with at least one aqueous emulsion, preferably an aqueous microemulsion, including at least one organic additive. The impregnated polymer substrate obtained from said process can be advantageously used for obtaining polymer end-products having improved aesthetic characteristics (for example, impregnation with at least one dye) or stability characteristics (for example, impregnation with at least one stabilizer), which can be used in various fields such as, for example, the optical field (e.g., advanced optical components, laser applications), the medical field (e.g., the release of pharmaceutical substances), the agricultural field (e.g., release of pesticides), fragrances (e.g., release of fragrances). More specifically, said polymer substrate can be used in luminescent solar concentrators (LSCs) which, in their turn, can be advantageously used together, for example, with photovoltaic cells (or solar cells), or photoelectrolytic cells, in solar devices (i.e. devices for exploiting solar energy). Furthermore, said luminescent solar concentrators (LSCs) can be advantageously used together, for example, with photovoltaic cells (or solar cells), in photovoltaic windows.
Abstract:
The present invention relates to a polymer composition having improved scratch resistance properties, the composition comprising (i) one or more polymers with a glass transition temperature (Tg) of at least 25° C., and (ii) solid particulate material having a surface modified with an organic modifier of formula (I), an organic modifier of formula (I) being the only organic modifier used to modify a surface of the solid particulate material, wherein the solid particulate material is distributed at least throughout a surface layer of the one or more polymers, and wherein the improved scratch resistance is relative to that of the one or more polymers absent the distributed particulate material, (I) where R is selected from a quaternary ammonium cation, a quaternary phosphonium cation, and imidazolium cation and a pyridinium cation; x is an integer ranging from 1-5; Ry is selected from OH, C(O)OH, NH2, SH and CH3; and Z is a counter anion.
Abstract:
A golf ball comprising a layer formed from at least one of a thermoset material or a thermoplastic material throughout; the layer having a treated region and an untreated region; the treated region extending inward from an outer surface of the layer and comprising a UV resistance composition; and the untreated region not comprising the UV resistance composition. For example, the treated region may be infused with the UV resistance composition. The layer may be a cover or even an inner golf ball layer, which can sometimes become exposed during play. The UV resistance composition may be formed from a mixture of an ultraviolet light absorber (UVA) and a solvent, the UVA being selected from benzotriazole type stabilizers, hindered amine type stabilizers, phenolic type stabilizers, triazines, or combinations thereof, and the solvent comprising at least one of acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, or butyl acetate.
Abstract:
The deposition of graphene is accomplished by various techniques that result in a change of the graphene's solubility in the liquid medium. The solubility change enables the deposition of the graphene onto the substrate. Once the graphene is deposited onto the substrate, the at least partially coated substrate may be separated from the liquid medium. The substrates may then serve as a carrier to deliver the graphene to a desired application.
Abstract:
Various embodiments disclosed relate to melt-stabilized materials including ultra high molecular weight polyethylene (UHMWPE), methods of making the same, and medical implants including the same. In various embodiments, the present invention provides a method of melt-stabilizing a material including UHMWPE. The method includes obtaining or providing a solid material including UHMWPE including a first concentration of free-radicals. The method includes coating at least part of the solid material with a liquid composition including at least one antioxidant, to provide a coated solid material. The method includes heating the coated solid material in an environment including oxygen, the heating being sufficient to melt at least part of the UHMWPE, to provide a heated material. The method also includes solidifying the heated material, to provide a melt-stabilized material including UHMWPE including a second concentration of free-radicals, wherein the second concentration of free-radicals is less than the first concentration of free-radicals.