Abstract:
The present invention comprises a viscosifier for oil well fluids, said viscosifier comprising a cross-linked micro- or nano-fibrillated cellulose (MFC).
Abstract:
An agent for oilfield applications capable of being dispersed in water is nanofibrillar cellulose. The nanofibrillar cellulose mixed in water gives shear-thinning behavior to the composition, which is pumped to a subterranean oil-containing formation to aid in oil recovery.
Abstract:
The invention relates to methods of producing microfibrillated cellulose (MFC). According to the invention a fibrous pulp suspension is fibrillated mechanically at a consistency of less than 12.5%, dewatered to raise the consistency of the fibrillated suspension to at least 12.5%, and then subjected in the dewatered condition to further fibrillation. Alternatively an initially fibrillated fibrous pulp suspension may be dewatered and fibrillated in the dewatered condition, after which these dewatering and fibrillating steps are repeated one or more times so that pulp consistency is increased for each fibrillation step. The goals of raising the consistency between subsequent fibrillations are energy saving and an increased aspect ratio in MFC. The invention even comprises uses of the MFC product, e.g. as an additive for papermaking furnish or injection molded plastic composites.
Abstract:
Surgical devices and methods are provided for preventing the formation of post-operative adhesions. In one device, an envelope of bioabsorbable material defines at least one opening, and a layer of bioabsorbable adhesion-preventing material is disposed on an exterior surface of the envelope. A rigid or semi-rigid barrier member is at least partially disposed in a space inside the envelope, without adhering to the envelope such that the barrier member can be pulled out of the envelope through the opening. In another device, a rigid or semi-rigid barrier member is removably attached to a layer of bioabsorbable adhesion-preventing material by a controlled adhesive. In another device, a rigid or semi-rigid bioabsorbable barrier member, such as compressed cellulose, is attached to a layer of bioabsorbable adhesion-preventing material. The envelope of bioabsorbable material may include cellulose or oxidized regenerated cellulose. The adhesion-preventing material may include chemically modified sodium hyaluronate and carboxymethylcellulose.
Abstract:
A method for the production of a composite material comprising nanofibrillated polysaccharide, the method comprising the following steps: (i) providing a liquid suspension of the nanofibrillated polysaccharide; (ii) bringing said liquid suspension in contact with at least one additive, thereby forming a composite material suspension, wherein the composite comprises the nanofibrillated polysaccharide and the at least one additive, (iii) increasing the solid contents of said composite material suspension, thereby forming a high solid contents composite material suspension.
Abstract:
Disclosed herein are methods for producing nanocrystalline cellulose and oxidized nanocrystalline cellulose from biomass. Also disclosed are methods for forming materials, and the materials formed from a fibrin matrix that incorporates the nanocrystalline cellulose and/or the oxidized nanocrystalline cellulose.
Abstract:
The present disclosure describes an implant for tissue replacement or augmentation including a resorbable non-pyrogenic porous body of irradiated oxidized cellulose, formed from a precursor reactive mixture of irradiated cellulose and an oxidizing agent, where the body forms a heterogeneous three-dimensional fibrillar network. Also disclosed is a method for producing a body of oxidized cellulose including irradiating a body of cellulose to form an irradiated body of cellulose, and reacting the irradiated body of cellulose with an oxidizing agent to form a non-pyrogenic porous and resorbable body of oxidized cellulose.
Abstract:
A method for forming an embolism within a blood vessel is disclosed. The method includes including: implanting an oxidized cellulose embolization solution into a lumen of a blood vessel to form an embolism within the lumen. The oxidized cellulose is present in an amount from about 10% by weight to 20% by weight of the oxidized cellulose embolization solution. The method also includes adjusting recanalization time of the embolism, which may be adjusted by tailoring a degradation rate of the oxidized cellulose.
Abstract:
The present invention relates to a haemostatic patch comprising a porous layer based on oxidized cellulose and a neutralized film based on chitosan, said film comprising a free face and a face fixed on one of the faces of the porous layer, and to the method of preparing said patch comprising the following steps:—a°) preparing a porous layer based on oxidized cellulose,—b°) preparing a film based on chitosan starting from an acidic aqueous solution of chitosan,—c°) fixing the film obtained in b°) on one face of the porous layer,—d°) neutralizing the film obtained in b°),—where step c°) can be carried out before or after step d°), characterized in that: the neutralizing step d°) comprises treatment of said film with a neutralizing composition comprising at least ethanol and ammonium hydroxide (NH4OH).
Abstract:
A fastening component is a molded article of a mixture in which microfibrillated cellulose fibers are dispersed in a thermoplastic resin, wherein the thermoplastic resin has a melting point of between 150 and 200° C., and wherein when the total mass % of the thermoplastic resin and the cellulose fibers is set to be 100 mass %, the mass % of the cellulose fibers included in the mixture is greater than 20 mass % and less than 60 mass %. When the total mass % of the thermoplastic resin and the cellulose fibers is set to be 100%, the mass % of the cellulose fibers included in the mixture is preferably equal to or greater than 30 mass % and equal to or less than 50 mass %.