Abstract:
A lubricant for the topical application to objects that will contact various forms of water, e.g., liquid, snow, ice, or mixtures thereof, to reduce friction and thereby increase speed, glide and maneuverability. The lubricant consists essentially of hexagonal boron nitride and a binder of single or mixed oxides or organics, the boron nitride content (after drying) being from about 36 wt. % to about 99 wt. %. Binders of particular interest are water-based colloidal aluminum oxide and colloidal silicon dioxide. This lubricant is suitable for topical applications in a thin layer to various sports objects, such as skis, snowboards, ice skates, snowmobiles, toboggans, sleds, boats, etc., where reduced friction, and thus higher speed, glide and maneuverability is desired. Although a solid stick form (by drying or pressure-less sintering) is preferred, the lubricant can be in the form of a paste or a powder. Further, this lubricant can be incorporated into waxes of the type previously used for friction reduction to obtain the benefit of both.
Abstract:
The present invention provides a transition metal/polymer matrix composite material which has durable, wear and corrosion resistant and friction reducing characteristics which can be used in a powder or liquid form, or, which can be bonded to a desired surface at ambient temperature. The specific components are transition metal dichalcogenides (TMDs) including disulfides, diselenides and ditellurides of Ti, Zr, Hf, V, Nb, Cr, Mo, and W, and polymers including polytetrafuoroethylene (PTFE), hexafluoropropylene, perfluoroalkoxyvinyl ether, ethylenetetrafluoroethylene polymer, polyvinylidene fluoride and ethylenechlorotrifluoroethylene polymer. This invention brings together the unique properties of organic chemistry (PTFE) and inorganic chemistry (TMD's) which creates a synergistic interaction optimizing the friction reducing properties of PTFE with similar friction reducing properties of select TMD's and the TMD's additional wear-resistance and natural tendency for forming a tenacious physical bond at a molecular level. The invention comprises a mixture of PTFE and TMDs (particularly tungsten disulfide and molybdenum disulfide) which can be applied to a substrate through a variety of mechanisms and manners to form a lubricious and wear-resistant layer ranging from 0.5 micron to 60 microns thick.
Abstract:
The present invention concerns a surface coating sliding member made of rubber or plastic applied with a coating of excellent durability and high sliding property, in which the coating contains a solid lubricant such as molybdenum disulfide and a resin matrix, wherein the resin matrix comprises a fluoro-olefin vinyl ether polymer resin and/or fluoro-olefin vinyl ether vinyl ester copolymer.
Abstract:
A recirculating powder lubricant delivery system having improved oxidative stability and a lubricant therefor where the lubricant is a solid lubricant selected from a group of molybdenum disulfide, graphite and graphite fluoride, and wherein the solid lubricant is microencapsulated from an aqueous suspension of an alkali metal silicate containing a water soluble phosphate.
Abstract:
Improved lubrication of tools for hot working rare earth-transition metal alloy particles is provided by suitably applied glass or glass/graphite lubricants.
Abstract:
A wire rod is payed out from a pay-off stand and descaled in a descaling process. After preheating to a predetermined temperature by a preheating device, it is subjected to a lubrication pretreatment through a zinc calcium phosphate solution applied with ultrasonic wave in the lubrication pretreatment process. After rinsing process, the lubrication-pretreated wire rod is coated with a calcium stearate or a sodium stearate in lubricating process. Thereafter, the wire rod is dried sufficiently in drying process, and then added with a predies lubricant in wire drawing process and coiled by a coiler.
Abstract:
This invention provides a threaded connection for pipe or tube that has a non-sticky surface and that suppresses the occurrence of rust and exhibits excellent galling resistance and airtightness even in an extremely low temperature environment without using compound grease, a method of producing the same, and a composition for forming a solid lubricating coating on the threaded connection. A solid lubricating coating (24) formed from a composition containing a binder, a fluorine addition agent, a solid lubricant and a rust proof addition agent is coated as a topmost surface treatment coating on a contact surface of at least one of a pin and a box. Even when exposed to an extremely low temperature environment, the solid lubricating coating (24) can maintain adhesiveness and exhibit a lubricating function, can suppress the occurrence of galling of a threaded connection, and can also secure airtightness after fastening.
Abstract:
A coating of a metal sheet or strip comprising a lubricant and a protective base material is provided. The lubricant is contained in the protective base material, and the protective base material is at least in part selectively removable. There is also provided a metal sheet or strip capable of forming, in particular of superplastic forming, and having a coating according to the invention at least partially on one or on both sides of the metal sheet and a method for manufacturing a metal sheet or strip according to the invention comprising the steps of providing a metal sheet or strip capable of forming, in particular of superplastic forming, and applying a coating according to the invention.
Abstract:
A method of coating uses an anti-seizure agent for hot steel working that exhibits excellent wettability and surface film-adherability. The agent comprises: an inorganic component (first component); sodium hydroxide (second component); water-soluble resins and/or water-soluble surfactants (third component); and water. With the sum of the first component, the second component, and the third component as 100 mass %, the anti-seizure agent contains: 96.5 mass % or more and 99.98 mass % or less of the first component; 0.01 mass % or more and 2.0 mass % or less of the second component; and 0.01 mass % or more and 1.5 mass % or less of the third component, and the inorganic component is one or more selected from a group consisting of Al2O3, SiO2, CaO, B2O3, K2O, and Na2O. A coating layer formed solidly adheres to the steel and does not come off in both cold and hot working.