Abstract:
Novel strains of isolated and purified bacteria have been identified which have the ability to degrade petroleum hydrocarbons including a variety of PAHs. Several isolates also exhibit the ability to produce a biosurfactant. The combination of the biosurfactant-producing ability along with the ability to degrade PAHs enhances the efficiency with which PAHs may be degraded. Additionally, the biosurfactant also provides an additional ability to bind heavy metal ions for removal from a soil or aquatic environment.
Abstract:
A bacteria strain FERMBP-7046 belonging to the genus Acinetobacter, a strain FERMBP-7049 belonging to the genus Acinetobacter, a strain FERMBP-7047 belonging to the genus Pseudomonas, and a strain FERMBP-7048 belonging to the genus Alcaligenes are caused to act on an object of treatment, either individually or in a bacteria mixture including at least one of the foregoing strains. Thus it is possible to provide heavy oil degrading bacteria and a heavy oil degrading bacteria mixture which are inexpensively prepared, which simplify degradation and removal operations, and which can be stored and shipped simply, and to provide a nurturing composition for such bacteria, a method of degrading heavy oil using such bacteria, and building and civil engineering materials containing a substance obtained by heavy oil degradation treatment.
Abstract:
Disclosed is a novel amylase which mainly forms maltohexaose and maltoheptaose when reacted with starch, but does not substantially hydrolyze maltohexaose and an oligosaccharide of lower molecular than maltohexaose. The amylase can be prepared from microorganisms of the genus Alcaligenes, and has a relatively-high optimum temperature and thermal stability, as well as a relatively-wide range of optimum pH and pH stability. By using the amylase, saccharide compositions rich in maltohexaose and/or maltoheptaose or those rich on maltohexaitol and/or maltoheptaitol can be readily prepared in an industrial scale, and the saccharide compositions thus obtained can be used in a variety of food products, cosmetics and pharmaceuticals.
Abstract:
Disclosed is a novel amylase which mainly forms maltohexaose and maltoheptaose when acts on starch, but does not substantially hydrolyze maltohexaose and a lower molecular oligosaccharide than maltohexaose. The amylase can be prepared from microorganisms of the genus Alcaligenes, and has a relatively-high optimum temperature and thermal stability, as well as a relatively-wide range of optimum pH and pH stability. By using the amylase, saccharide compositions rich in maltohexaose and/or maltoheptaose or those rich in maltohexaitol and/or maltoheptaitol can be readily prepared in an industrial scale, and the saccharide compositions thus obtained can be used in a variety of food products, cosmetics and pharmaceuticals.
Abstract:
A microbiological process for the production of 6-hydroxypicolinic acid starting from picolinic acid and/or its salts. The concentration of picolinic acid and/or its salts is selected so that the 6-hydroxypicolinic acid is not further metabolized. The process is performed either by microorganisms of genus Pseudomonas, Bacillus, Alcalioenes, Aerococcus, or Rhodotorula, or with biomass using picolinic acid, which grow with picolinic acid as the sole carbon, nitrogen and energy source.
Abstract:
A process for preparation of S-(+)-3-halogeno-1,2-propanediol which comprises cultivating a bacterium, which has an ability to assimilate R-(-)-3-halogeno-1,2-propanediol and belongs to the genus Alcaligenes, or its culture broth in a medium containing racemate 3-halogeno-1,2-propanediol, and recovering S-(+)-3-halogeno-1,2-propanediol from the resulting culture broth.
Abstract:
A microbiological process for the production of 6-hydroxypicolinic acid starting from picolinic acid and/or its salts. The concentration of picolinic acid and/or its salts is selected so that the 6-hydroxypicolinic acid is not further metabolized. The process is performed either by microorganisms of genus Pseudomonas, Bacillus, Alcaligenes, Aerococcus, or Rhodotorula, or with biomass using picolinic acid, which grow with picolinic acid as the sole carbon, nitrogen and energy source.
Abstract:
The present invention is a process of degrading 1,4-dibenz-oxazepine with aicroorganism enzymatically capable of converting the 1,4-dibenz-oxazepine into at least o-nitrophenol which is further converted to catechol. The present invention is preferably carried out using a strain of Alcaligenes denitrificans denitrificans. Additional related compounds which can be degraded with Alcaligenes denitrificans denitrificans include: o-nitrophenol, catechol, and 3-methylcatechol.
Abstract:
The invention relates to an improvement of the floc-formation property of activated sludge contained in waste water.A waste water treatment process comprises steps culturing a novel strain-Alcaligenes faecalis HRL-1 - and adding the cultured cells to to-be-treated waste water.
Abstract:
The invention relates to an improvement of the floc-formation property of activated sludge contained in waste water.A waste water treatment process comprises steps culturing a novel strain--Alcaligenes faecalis HRL--1--and adding the cultured cells to to-be-treated waste water.