Abstract:
A method for increasing compressed air efficiency in a pump utilizes an air efficiency device in order to optimize the amount of a compressed air in a pump. The air efficiency device may allow for controlling the operation of the air operated diaphragm pump by reducing the flow of compressed air supplied to the pump as the pump moves between first and second diaphragm positions. A sensor may be used to monitor velocity of the diaphragm assemblies. In turn, full position feedback is possible so that the pump self adjusts to determine the optimum, or close to optimum, turndown point of the diaphragm assemblies. As such, air savings is achieved by minimizing the amount of required compressed air.
Abstract:
Embodiments of the present, invention provide a system and method for reducing the hold-up volume of a pump. More particularly, embodiments of the present invention provide a system and method for determining a home position to reduce hold-up volume at a dispense pump and/or a feed pump. The home position for the diaphragm can be selected such that the volume of the chamber at the dispense pump and/or feed pump contains sufficient fluid to perform the various steps of a dispense cycle while minimizing the hold-up volume. Additionally, the home position of the diaphragm can be selected to optimize the effective range of positive displacement.
Abstract:
A magnetic drive metering pump in which a movable thrust member is fixed to a diaphragm and is axially movable in a magnet shroud. The thrust member, on electrically actuating the magnet shroud, is drawn into the magnet shroud against the force of a recuperating spring, and after deactivating the magnet shroud, is returned to a starting position. The diaphragm cooperates alternately with an outlet and an inlet valve to produce a pump stroke in a pump metering head. The magnetic drive metering pump has a reference element associated with the thrust member and diaphragm, the position of which reference element is detected by a positional sensor. The positional sensor provides a signal which has a fixed relationship to the position of the reference element, and the motion of the thrust member is controlled by a control circuit such that it follows a predetermined nominal profile.
Abstract:
A method for controlling operation of a pump unit, where the pump unit includes a primary piston pump having a primary piston and a secondary piston pump having a secondary piston. The primary piston pump is fluidically connected with the secondary piston pump. The primary piston pump includes an inlet valve and an outlet valve, and the pump unit operates periodically according to a pump cycle. The method includes determining a fluid pressure of fluid dispensed by the pump unit, and performing a closed loop control of a position of the primary piston in dependence on the fluid pressure of the fluid dispensed by the pump unit during a first time interval of the pump cycle.
Abstract:
A variable displacement axial piston machine. The variable displacement axial piston machine includes a cylinder block with at least one main cylinder and main piston, a swash plate, a plunger arrangement with a plunger and auxiliary cylinder, and a sensor. The swash plate is arranged to effect movement of the main piston in the main cylinder upon rotation of the swash plate relative to the cylinder arrangement. The plunger is arranged to tilt the swash plate relative to the cylinder arrangement and to control a stroke of the main cylinder in the main piston. To provide a simple and reliable measurement of displacement of the main piston in the main cylinder, the invention provides a sensor element which is fixed in the auxiliary cylinder and which is adapted to sense movement of the plunger therein.
Abstract:
A linear compressor (100) applicable to a cooling system (20) includes a piston (1) driven by a linear motor (10), the piston (1) having displacement range controlled by means of a controlled voltage (VM), the controlled voltage (VM) having a voltage frequency (φP) applied to the linear motor (10) and adjusted by a processing unit (22), the range of piston (1) displacement being dynamically controlled in function of a variable demand of the cooling system (20), the linear compressor (100) having a resonance frequency, the processing unit (22) adjusting the range of piston (1) displacement, so that the linear compressor (100) will be dynamically kept on resonance throughout the variations in demand of the cooling system (20).
Abstract:
Systems and methods for compensating for pressure increase which may occur in various enclosed spaces of a pumping apparatus are disclosed. Embodiments of the present invention may compensate for pressure increases in chambers of a pumping apparatus by moving a pumping means of the pumping apparatus to adjust the volume of the chamber to compensate for a pressure increase in the chamber. More specifically, in one embodiment, to account for unwanted pressure increases to the fluid in a dispense chamber the dispense motor may be reversed to back out piston to compensate for any pressure increase in the dispense chamber.
Abstract:
Apparatus, methods, and system for wireless remote monitoring and controlling a sucker rod pump for producing hydrocarbons, providing self-adjusting methods for operation over a wide-range of operating conditions according to algorithms that automatically compensate for offset and amplitude drift in sensor data, automatically identify pump off conditions, and automatically optimize hold down time.
Abstract:
A method and a system for controlling an electric motor of a pump to counter act pressure pulsations generated by at least one pump element and to reduce noise, vibration, and harshness generated by the pump. The positions of at least one pump element of the pump and a shaft of the electric motor are determined. A pump stroke position is determined from the position of the pump element relative to the position of the shaft of the electric motor. The power sent to the electric motor is controlled according to the pump stroke position.
Abstract:
Embodiments of the present invention provide pumps with features to reduce form factor and increase reliability and serviceability. Additionally, embodiments of the present invention provide features for gentle fluid handling characteristics. Embodiments of the present invention can include a pump having a motor driven feed stage pump and a motor driven dispense stage pump. The feed stage motor and the feed stage motor can include various types of motors and the pumps can be rolling diaphragm or other pumps. According to one embodiment, a dispense block defining the pump chambers and various flow passages can be formed out of a single piece of material.