Abstract:
The present invention relates to a carbonization process of rubber products such as shredded waste tyre and the like in a sealed carbonizing vessel (200) whose operating pressure is below atmospheric pressure and under controlled high temperature environment while continuously being moved in a defined path at a controlled speed thus enabling shredded tyre to be fed constantly into the vessel (200) while the by-products of the carbonization process are continually discharged.
Abstract:
This invention relates to systems, apparatus and methods of operating a wet combustion engine and apparatus therefore, capable of biologically burning fuels within a wet combustion chamber within a bioproactor system, including but not limited to, organic carbon containing materials especially biological, hazardous or toxic waste contaminants, in an environmentally sensitive manner. An integrated computer control system that, proactively and pre-emptively, uses feedback from bio-sensors, to monitor, record and control applicable components of the bio-system, to optimize, replenish, and sustain exponential growth of selected life-forms, including but not limited to microbes such as bacteria. In the intake cycle, a suitably prepared fuel mixture is metered into the wet combustion diffusion separation membrane chamber located within the life-support chamber of the bioproactor. In the combustion cycle, diffusion and combustion rates are monitored and timed. In the exhaust cycle, products of combustion, including water and incomplete combustion by-products both organic and inorganic, are removed. The above cycles may be repeated sequentially. The subsequent accumulation of all of the exhaust cycle's products of combustion may be collected, stored, classified, separated, recycled or discharged. Some of the potential energy released during the combustion cycle's reaction directly results in the conversion of wastes, the generation of gases and, in the case of organic carbon fuels, the generation of water. Other uses of the kinetic and potential energy released by this engine include, but are not limited to the, mechanical movements of actuators, and heat transfer to heat exchangers.
Abstract:
This invention relates to systems, apparatus and methods of operating a wet combustion engine and apparatus therefore, capable of biologically burning fuels within a wet combustion chamber within a bioproactor system, including but not limited to, organic carbon containing materials especially biological, hazardous or toxic waste contaminants, in an environmentally sensitive manner. An integrated computer control system that, proactively and pre-emptively, uses feedback from bio-sensors, to monitor, record and control applicable components of the bio-system, to optimize, replenish, and sustain exponential growth of selected life-forms, including but not limited to microbes such as bacteria. In the intake cycle, a suitably prepared fuel mixture is metered into the wet combustion diffusion separation membrane chamber located within the life-support chamber of the bioproactor. In the combustion cycle, diffusion and combustion rates are monitored and timed. In the exhaust cycle, products of combustion, including water and incomplete combustion by-products both organic and inorganic, are removed. The above cycles may be repeated sequentially. The subsequent accumulation of all of the exhaust cycle's products of combustion may be collected, stored, classified, separated, recycled or discharged. Some of the potential energy released during the combustion cycle's reaction directly results in the conversion of wastes, the generation of gases and, in the case of organic carbon fuels, the generation of water. Other uses of the kinetic and potential energy released by this engine include, but are not limited to the, mechanical movements of actuators, and heat transfer to heat exchangers.
Abstract:
A method of disposing of hazardous wastes connected with criminal activity comprising transporting a portable incinerator to the site of the criminal activity, sorting through waste materials at the site and selecting waste materials which are combustible and will not emit harmful emissions. The selected waste materials are placed within the incinerator and heated to a temperature of between 1600-1900° F. Non-combustible containers used to practice the illegal activity can be sterilized at the same time. The residue from the incinerator can then be collected and buried in a non-toxic landfill.
Abstract:
In a waste wire harness including electric wires each coated with a resin comprised of an olefin-based resin and magnesium hydroxide as a fire retardant, and including accompanied members having at least one of terminals, connectors, various kind of boxes such as junction boxes and fuse boxes, tapes, tubes, grommets, wiring clips, and protectors, a method for recycling the waste wire harness includes a step of removing the accompanied members from the waste wire harness, a step of crushing the waste wire harness after removing the accompanied members to obtain crushed particles, a step of incinerating the crushed particles to produce incinerated ash, a step of converting a magnesium compound contained in the incinerated ash into magnesium hydroxide, and a step of collecting the magnesium hydroxide.
Abstract:
The invention relates to a method for processing waste, in particular for utilising the recyclable material contained in waste, and a waste processing plant, in particular a plant processing waste fractions suitable for recycling of material. At first, the waste is pre-treated for removing undesirable matter. Fibre waste is separated from the other waste and processed into a raw material for paper or board. Plastics-containing matter is separated and processed into plastic oil by pyrolysis. The by-products from the processes and the waste fraction which remains of the processing are used as energy for the needs of the processes. The method can additionally comprise a stage in which waste wood is separated from the other waste and processed into a raw material for particleboard or equivalent.
Abstract:
Combustible is comminuted and dried, and metal and noncombustible are removed from the coarsely comminuted combustible. Then, the combustible is secondarily comminuted and separated into coarse combustible and fluff which is fine combustible. The coarse combustible of the separated combustible is fed onto a fire grate (2) of a refuse incinerator (1), and burned in flat bed combustion in a primary combustion chamber (4). On the other hand, the fluff is burned in suspended combustion in a secondary combustion chamber (7) with a combustion fluff burner (5) for incinerating combustible. Thus, refuse containing much plastics which is formed into fluff can be efficiently disposed of, whereby the amount of incineration is increased as a whole.
Abstract:
A system for producing a suitable fuel from waste material including a dispersion tank in which is located a rotary dispersion and agitation system comprising external vanes, rotary and stationary plates having opposing faces fitted with intermeshing shear blocks, forming an attrition zone therebetween for grinding and dispersing solids in a liquid blend stock. A method is provided for varying the displacement between the shear blocks to control the fineness of the grinding of the waste material. A method is provided for discharging metal from the dispersion tank and a pump is provided for circulating liquid from the dispersion tank to an accumulation tank and for recirculating the liquid from the accumulation tank to the dispersion tank. Feeding systems are provided for delivering solid waste material to the dispersion tank and include systems for grinding drums containing waste material, expressing waste material from the drums and auguring waste material from the drums. The present invention also provide a method of processing waste material and a blend stock which provides a suitable fuel and includes the steps of grinding the waste material in a tank containing the blend stock with the grinding being in at least part provided by the coaction between a rotating impeller and a stationary plate so that the degree to which the waste material is ground is controlled by controlling the spacing between the plate and the impeller.
Abstract:
A pressurized combustion of slurries of low-cost, unbeneficiated solid fuels in the presence of steam and alkali in which sulfur oxide emissions are inherently low, emissions of nitrogen oxides controlled by the injection of a scavenging agent and emissions of particulates prevented by condensing steam on and around them. The combustion has applications to steam boilers, combined cycles and gas turbines, including steam injected (STIG) and intercooled steam injected (ISTIG) versions. Turbine blade and nozzle erosion and deposits are avoided by the effective wet separation of ash particles before reheating and expansion.
Abstract:
Methods and apparatuses can be configured to facilitate sorting of paper from garbage and/or single stream recycling and subsequently process that separated paper to remove the contaminants from the paper so that the paper is in an acceptable condition for recycling. In some embodiments, the apparatus and method may utilize at least one dryer device that is configured to heat the paper without combusting the paper to remove water from the paper. The dryer device can also be configured to mix the paper as it is dried while also removing particulate contaminants off of the paper to clean the thrown away paper sufficiently so that the paper is in a condition that is acceptable for recycling into a paper product (e.g. a cardboard box, paper plate, sheets of paper, etc.).