Abstract:
A near-eye optical display system utilized in augmented reality devices includes a see-through waveguide display having optical elements configured for in-coupling virtual images from an imager, exit pupil expansion, and out-coupling virtual images with expanded pupil to the user's eye. The near-eye optical display system further includes a curved two-sided array of electrically-activated tunable liquid crystal (LC) microlenses that is located between the waveguide and the user's eye. The LC microlenses are distributed in layers on each side of the two-sided array. Each pixel in the waveguide display is mapped to an LC microlens in the array, and multiple nearby pixels may be mapped to the same LC microlens. A region of the waveguide display that the user is gazing upon is detected and the LC microlens that is mapped to that region may be electrically activated to thereby individually shape the wavefront of each pixel in a virtual image.
Abstract:
An integrated optical beam steering device includes a planar dielectric lens that collimates beams from different inputs in different directions within the lens plane. It also includes an output coupler, such as a grating or photonic crystal, that guides the collimated beams in different directions out of the lens plane. A switch matrix controls which input port is illuminated and hence the in-plane propagation direction of the collimated beam. And a tunable light source changes the wavelength to control the angle at which the collimated beam leaves the plane of the substrate. The device is very efficient, in part because the input port (and thus in-plane propagation direction) can be changed by actuating only log2 N of the N switches in the switch matrix. It can also be much simpler, smaller, and cheaper because it needs fewer control lines than a conventional optical phased array with the same resolution.
Abstract:
An eye tracker having a waveguide for propagating illumination light towards an eye and propagating image light reflected from at least one surface of an eye, a light source optically coupled to the waveguide, and a detector optically coupled to the waveguide. Disposed in the waveguide is at least one grating lamina for deflecting the illumination light towards the eye along a first waveguide path and deflecting the image light towards the detector along a second waveguide path.
Abstract:
An integral chip is disclosed by embodiments of the present disclosure, including: two mono-mode vertical coupling gratings, two modulation modules, one 2×1 multi-mode interference coupler, and one dual-mode vertical coupling grating. The integral chip is capable of operating in dual wavelengths and dual polarization states by combination of polarization multiplexing and wavelength division multiplexing so as to realize modulation of complex formats and to enhance data modulation rate.
Abstract:
Apparatus and techniques are presented such as can be used for electro-optic modulation and detection or other applications. For example, an optical metal grating is disposed on a thin metal film to couple light from broadside to the metal film as surface plasmon-polariton waves; below the metal film is located a thin insulating layer and a doped semiconductor region forming a metal-insulator-semiconductor structure. The device can be configured to operate as a reflection or transmission modulator, or as a photodetector, for example. Modulating the voltage applied to the metal-insulator-semiconductor structure modulates the carrier concentration in the semiconductor near the insulating layer, which modulates the refractive index of the semiconductor in this region, thus modulating the coupling efficiency to the surface plasmon-polaritons, thus modulating the reflectance and transmittance of the device. Modulated incident light produces a modulated photocurrent under bias which may be detected using electronics.
Abstract:
An optical time delay module has a plurality of time delay elements connected in a series and a plurality an optical output couplers wherein each of said optical output couplers is operationally connected between one or more time delay elements in said series, the optical output couplers providing a plurality of optical outputs from said module with different optical delays controlled by a digital control word.
Abstract:
A set of three gratings may be operated in a vernier loop fashion to select a particular wavelength from a wavelength division multiplexed system. As a result, an optical add/drop multiplexer may be provided that can be tuned to select a desired wavelength. In one embodiment, the tuning may be done thermo-optically.
Abstract:
A set of three gratings may be operated in a vernier loop fashion to select a particular wavelength from a wavelength division multiplexed system. As a result, an optical add/drop multiplexer may be provided that can be tuned to select a desired wavelength. In one embodiment, the tuning may be done thermo-optically.
Abstract:
A THz-wave generator according to the present invention includes a nonlinear optical crystal 1 capable of parametric generation, a first laser device 12 for injecting a single-frequency first laser beam 7 as a pump wave into the nonlinear optical crystal, and a second laser device 14 for injecting a different single-frequency second laser beam 8 to thereby injection-seed a second laser beam 8 in a direction in which an idler wave is generated by the pump wave. By this configuration, it is possible, in generation of a THz-wave by use of the parametric effect in the nonlinear optical crystal under a non-collinear phase matching condition, to greatly increase a power of the THz-wave, to narrow its spectrum width, to make variable the wavelength of a generated THz-wave, and to hold its generation direction almost constant.