Abstract:
A triode structure of a field emission display and fabrication method thereof. A plurality of cathode layers arranged in a matrix is formed overlying a dielectric layer. A plurality of emitting layers arranged in a matrix is formed overlying the cathode layers, respectively. A plurality of lengthwise-extending gate lines is formed on the dielectric layer, in which each of the gate layers is disposed between two adjacent columns of the cathode layers.
Abstract:
The present invention provides an image display device, in which a top electrode is selectively separated by laser ablation for each scan line. As the laser, a third harmonic wave of YAG laser with a wavelength of 355 nm is used. By setting film thickness of the interlayer insulator 15 to 100 nm and film thickness of a field insulator 14 to 140 nm, reflective spectrum has the minimum value near a wavelength of 355 nm, This laser beam is projected from a top electrode 13 toward a substrate 10. A part of the projected laser beam 20 is reflected by the top electrode 13, but most of the laser beam pass through a field insulator 14 and the interlayer insulator 15 and is reflected by a bottom electrode 11. As the result of interference of these two reflection waves, the minimum value appears in reflection spectrum. In this case, the laser beam is mostly absorbed near boundary surface between the top electrode 13 and the interlayer insulator 15. The top electrode 13 is processed by ablation (melting and evaporation), and the top electrode 13 is separated at this portion. By utilizing interference phenomenon in this manner, no damage is given to the interlayer insulator 13, the field insulator 14, and the bottom electrode 11, which serve as underlying layers, and the top electrode 13 can be selectively cut off.
Abstract:
A fluorescent lamp with compensation for ineffective luminance thereof, including a lamp tube; and a fluorescent layer incompletely coated on an inner surface of the lamp tube to define a first light-transmitting section at a middle portion of the lamp tube and a second light-transmitting section at two ends of the lamp tube, wherein the second light-transmitting section has an area larger than that of the light-transmitting section.
Abstract:
In manufacturing a display panel of a PDP, a CRT, or the like, for example, a screen stripe is formed on a panel surface in a production cycle time equivalent to or faster than that of the screen printing system. By using a dispenser of a variable flow rate type for a display panel that has an effective display area in which a paste layer is formed and a non-effective display area in which no paste layer is formed outside this effective display area, paste discharge is promptly interrupted when a discharge nozzle runs through the non-effective display area of the display panel.
Abstract:
A method for fabricating a plasma display panel can improve contrast of a panel by using an inkjet printing method in forming a fluorescent layer in the fabrication process of the plasma display panel. Also, after charging a liquid flake of fluorescent ink with a charge of a predetermined polarity, contrast of the panel can be improved by inducing the injection direction of the liquid flake by charging an address electrode with a charge having an opposite polarity to the liquid flake so that the charged liquid flake can be printed in the center portion of the cell region.
Abstract:
An electroluminescent display device is increased in size by securing plural small-size panels, each incorporating plural electroluminescent elements, to a large-size support with an intervening adhesive layer.
Abstract:
A light emitter for a display consisting of a photoalignment layer. A light emitting polymer is photoaligned on the photoalignment layer. Also, methods for forming the light emitter and use of the light emitter in displays, backlights, electronic apparatus and security viewers.
Abstract:
Provided is a field emission lamp (FEL), which includes a plurality of cathode electrodes formed above a first substrate, an anode electrode formed under a second substrate to face the cathode electrode, a fluorescent layer composed of red, green and blue (RGB) patterns formed alternately on the anode electrode in an oblique direction, and a plurality of emitters formed on the cathode electrodes to correspond to the RGB patterns. According to the present invention, as an FEL having a fast response time is used as a backlight unit, a color breaking phenomenon can be prevented in a color sequential driving method.
Abstract:
[Problem to be solved] An object is to provide an EL display panel which can make a non-display area on the outermost circumference of the panel area unobtrusive without causing any deterioration of the material of EL devices.[Solving Means] The EL display panel with a plurality of electroluminescent devices is provided, on its front transparent substrate, with an optically excited layer including a photoluminescent material. The optically excited layer is disposed at a position corresponding to each electroluminescent device disposed on the outermost circumference among the electroluminescent devices.
Abstract:
Provided is a field emission lamp (FEL), which includes a plurality of cathode electrodes formed above a first substrate, an anode electrode formed under a second substrate to face the cathode electrode, a fluorescent layer composed of red, green and blue (RGB) patterns formed alternately on the anode electrode in an oblique direction, and a plurality of emitters formed on the cathode electrodes to correspond to the RGB patterns. According to the present invention, as an FEL having a fast response time is used as a backlight unit, a color breaking phenomenon can be prevented in a color sequential driving method.