Abstract:
A dose-modulated irradiating system includes an x-ray tube (20) with at least a filament (80) for generating electrons, a cathode (84) and an anode (92) for accelerating and collimating the generated electrons into an electron beam (94), and an electrostatic grid with grid electrodes (110, 112) for steering the electron beam (94) on the anode (92). The anode (92) generates an x-ray beam (96) responsive to the electron beam (94). Grid biasing is provided for applying a time-varying electrical bias to the grid electrodes (110, 112) that produces a first time-varying intensity modulation of the electron beam (94). A current of the filament (80) is modulated to produce a second time-varying intensity modulation of the electron beam (94). A controller (52) controls cooperatively combining the first and second time-varying intensity modulations to produce a combined time-varying intensity modulation.
Abstract:
An X-ray generator comprises a cathode electrode (15), a grid electrode (17) for controlling an electron beam (e) generated by the cathode electrode (15), a focus electrode (18) for focusing the electron beam (e), and an anode target (14) for emitting X rays by the collision of the electron beam (e). A bias voltage (Vb) is impressed between the cathode electrode (15) and the grid electrode (17) from a bias voltage generating section (20). A tube voltage (Vt) is impressed on the anode target (13) from a tube voltage generating section (19). A voltage dividing section (31) divides the tube voltage (Vt) to generate a focus voltage (Vf). The effect of a variation in voltage on the formation of a focal point of the electron beam is suppressed by impressing such a focus voltage (Vf) on the focus electrode (18).
Abstract:
The invention relates to an X-ray system/generator in which after the end of an X-ray exposure the grid of th X-ray tube is blocke4d as long as the X-ray exposure is read out from a detector (or as long a film or a PCR is removed from the X-rays). After read out, the grid is released so that the system capacitance may be discharged via the X-ray tube. Thereby over-exposure due to energy stored in the sytem- and cable capacities is avoided (which is a problem especially for thin objects), and the system may be switched from a tube with grid to a tube without grid without problems.
Abstract:
A system can have an x-ray source that generates a series of individual x-ray pulses for multi-energy imaging. A first x-ray pulse can have a first energy level and a subsequent second x-ray pulse in the series can have a second energy level different from the first energy level. An x-ray imager can receive the x-rays from the x-ray source and can detect the received x-rays for image generation. A generator interface box (GIB) controls the x-ray source to provide the series of individual x-ray pulses and synchronizes detection by the x-ray imager with generation of the individual x-ray pulses. The GIB can control x-ray pulse generation and synchronization to optimize image generation while minimizing unnecessary x-ray irradiation.
Abstract:
A bipolar grid may be positioned between a cathode and an anode. The bipolar grid may receive a positive grid voltage that corresponds to a voltage in an electric field between the cathode and the anode such that the grid does not interfere with an electron beam generated by an electron emitter of the cathode. The bipolar grid may receive a negative grid voltage to isolate the electron emitter such that the electron beam does not reach the anode.
Abstract:
An imaging module includes a plurality of cathodes and respective gates, each cathode configured to generate a separate beam of electrons directed across a vacuum chamber and each gate matched to at least one respective cathode to enable and disable each separate beam of electrons from being directed across the vacuum chamber. A target anode is fixed within the vacuum chamber and arranged to receive the separate beam of electrons from each of the plurality of cathodes and, therefrom, generate a beam of x-rays. A deflection system is arranged between the plurality of cathodes and the target anode to generate a variable magnetic field to control a path followed by each of the separate beams of electrons to the target anode.
Abstract:
A cathode head can include: a first electron emitter filament having a first size; a first grid pair defining walls of a first filament slot having the first filament therein, each grid member of the first grid pair being electronically coupled to different voltage sources; a second electron emitter filament; and a second grid pair defining walls of a second filament slot having the first electron emitter therein, each grid member of the second grid pair being electronically coupled to different voltage sources. The first grid pair can have a first and second grid members; and the second grid pair can have the second grid member and a third grid member. The first grid member and third grid member are electronically coupled to the same voltage source and the second grid member being electronically coupled to a different voltage source.
Abstract:
Disclosed is an X-ray source, including: a cathode; an anode positioned on the cathode so as to face the cathode; emitters formed on the cathode; a gate electrode positioned between the cathode and the anode and including openings at positions corresponding to those of the emitters; an insulating spacer formed between the gate and the anode; and a coating layer formed on an internal wall of the insulating spacer, and including a material having a lower secondary electron emission coefficient than that of the insulating spacer.
Abstract:
An X-ray tube includes an emitter, and an electrode assembly. The emitter is configured to emit an electron beam toward a target. The electrode assembly includes at least one electrode having a bias voltage with respect to the emitter. At least one electrode of the electrode assembly is a segmented electrode including a plurality of segments. The plurality of segments includes a first member and a second member. The first member is configured to have a first bias voltage and the second member is configured to have a second bias voltage that is different from the first bias voltage.
Abstract:
Provided is a high-output X-ray generation tube in which thermal damage to a target is reduced. The X-ray generation tube includes a target, an electron source, and a grid electrode having multiple electron passage apertures disposed between the target and the electron source. A source-side electron beam on the electron source side with respect to the grid electrode has a current density distribution, and the grid electrode has an aperture ratio distribution so that a region of the source-side electron beam in which a current density is largest is aligned with a region of the grid electrode in which an aperture ratio is smallest.