Abstract:
Provided is an X-ray tube which includes a first electrode, a second electrode spaced apart from the first electrode, a target disposed in a lower portion of the second electrode, an emitter on the first electrode, a third electrode which is positioned between the first electrode and the second electrode and includes an opening at a position perpendicularly corresponding to the emitter, and a spacer provided on the third electrode and surrounding the second electrode. The spacer includes a first section located adjacent to the third electrode and a second section disposed on the first section. The spacer includes a ceramic insulator and conductive dopants dispersed within the ceramic insulator. A concentration of the conductive dopants in the first section of the spacer is greater than a concentration of the conductive dopants in the second section. The third electrode is in contact with the first section of the spacer.
Abstract:
A system can have an x-ray source that generates a series of individual x-ray pulses for multi-energy imaging. A first x-ray pulse can have a first energy level and a subsequent second x-ray pulse in the series can have a second energy level different from the first energy level. An x-ray imager can receive the x-rays from the x-ray source and can detect the received x-rays for image generation. A generator interface box (GIB) controls the x-ray source to provide the series of individual x-ray pulses and synchronizes detection by the x-ray imager with generation of the individual x-ray pulses. The GIB can control x-ray pulse generation and synchronization to optimize image generation while minimizing unnecessary x-ray irradiation.
Abstract:
Disclosed is an X-ray source, including: a cathode; an anode positioned on the cathode so as to face the cathode; emitters formed on the cathode; a gate electrode positioned between the cathode and the anode and including openings at positions corresponding to those of the emitters; an insulating spacer formed between the gate and the anode; and a coating layer formed on an internal wall of the insulating spacer, and including a material having a lower secondary electron emission coefficient than that of the insulating spacer.
Abstract:
Provided is an X-ray source including a vacuum closed tube. The X-ray source includes a high voltage connection module, a tube module, and a magnetic lens system into which the tube module is inserted. The tube module includes a vacuum closed tube. The vacuum closed tube includes a cathode electrode provided at one end thereof, a nano-emitter on the cathode electrode, an anode electrode provided at the other end, and a first insulation spacer provided between the cathode electrode and the anode electrode. In addition, the vacuum closed tube includes a first conductive tube and a second conductive tube both provided between the cathode electrode and the anode electrode and separated from each other by the first insulation spacer, and a first collimator block covering an inner surface of the first insulation spacer and having a first opening.
Abstract:
Provided is an X-ray apparatus including: a target configured to generate an X-ray by collision of electrons or transmission of electrons; a filament configured to release the electrons to the target; a housing that has the filament therein; and a first holding member configured to hold a portion of the target disposed on an outer side of the housing on the outer side of the housing.
Abstract:
Provided is an X-ray generating tube including an electron gun, which includes a grid electrode secured to a support member. In the X-ray generating tube, thermal stress generated at a joining portion between the support member and the grid electrode is reduced, to thereby maintain a position of an electron beam on a target irradiated with the electron beam accurately for a long time. A grid electrode and a support member are secured to each other via a buffer member, which has an elastic coefficient that is lower than elastic coefficients of the grid electrode and the support member, and which is joined to the grid electrode and the support member through a first joining portion on the grid electrode side and a second joining portion on the support member side, respectively.
Abstract:
In a multi-source radiation generating apparatus including a plurality of combinations of a cathode and a target, an extraction electrode is disposed for a plurality of cathodes in common. When a potential of the extraction electrode is constant, potentials for the cathodes are selectively switched between a cutoff potential which is higher than the potential of the extraction electrode and an emission potential which is lower than the potential of the extraction electrode.
Abstract:
The present invention provides for an improved scanning process with a stationary X-ray source arranged to generate X-rays from a plurality of X-ray source positions around a scanning region, a first set of detectors arranged to detect X-rays transmitted through the scanning region, and at least one processor arranged to process outputs from the first set of detectors to generate tomographic image data. The X-ray screening system is used in combination with other screening technologies, such as NQR-based screening, X-ray diffraction based screening, X-ray back-scatter based screening, or Trace Detection based screening.
Abstract:
A transmissive-type target includes a target layer, and a transmissive substrate configured to support the target layer. The transmissive substrate has a pair of surfaces facing each other and is formed of polycrystalline diamond. In the transmissive substrate, one of the pair of surfaces includes polycrystalline diamond having a first average crystal grain diameter which is smaller than a second average crystal grain diameter of polycrystalline diamond included on the other surface opposing thereto. The target layer is supported by any one of the pair of surfaces.
Abstract:
A x-ray apparatus of the present application comprises: a vacuum box which is sealed at its periphery, and the interior thereof is high vacuum; a plurality of electron transmitting units arranged in a linear array and installed on the wall at one end within the vacuum box, each electron transmitting unit is independent to each other; the electron transmitting unit having: a heating filament; a cathode connected to the heating filament; a grid arranged above the cathode opposing the cathode; anode made of metal and installed at the other end of the vacuum box, and in the direction of length, the anode is parallel to the plane of the grid of the electron transmitting unit, and in the direction of width, the anode has a predetermined angle with respect to the plane of the grid of the electron transmitting unit.