Abstract:
An apparatus and method are disclosed for efficient detection of ions ejected from a quadrupolar ion trap, in which the ions are ejected as first and second groups of ions having different directions. The first and second groups of ions are received by a conversion dynode structure, which responsively emits secondary particles that are directed to a shared detector, such as an electron multiplier. The conversion dynode structure may be implemented as a common dynode or as two dynodes (or sets of dynodes), with each dynode positioned to receive one of the groups of ions.
Abstract:
An apparatus and method are disclosed for efficient detection of ions ejected from a quadrupolar ion trap, in which the ions are ejected as first and second groups of ions having different directions. The first and second groups of ions are received by a conversion dynode structure, which responsively emits secondary particles that are directed to a shared detector, such as an electron multiplier. The conversion dynode structure may be implemented as a common dynode or as two dynodes (or sets of dynodes), with each dynode positioned to receive one of the groups of ions.
Abstract:
The invention relates to a photodetector capable of detecting even weak light with precision and having a structure permitting size reduction. In the photoelectric tube, a photoelectric tube is cooled down starting from a light receiving faceplate side via a supporting protrusion piece of a heat conductive supporting member fixed to the heat absorbing portion of a cooling device by the heat absorbing operation of the cooling device. At this time, the photoelectric tube is fixed only to the supporting protrusion piece, so that heat inflow through other members is prevented. Thus, the photoelectric surface is efficiently cooled down through the light receiving faceplate by the cooling device serving as a cooling source, so that a stable cooling temperature is obtained. This suppresses the emission of thermal electrons from the photoelectric surface, and hence sufficiently suppresses the occurrence of noise in the photoelectric tube. In this state, light to be measured that is transmitted through the light entrance window of the housing is incident on the photoelectric surface of the photoelectric tube via an aperture stop of the supporting protrusion piece, while background light emitted from the housing is shielded by the supporting protrusion piece around the aperture stop so as not to be incident on the photoelectric surface.
Abstract:
Via the shape of the photocathode surface and the geometry and potential distribution of electrodes of the electron-optical system, an X-ray image intensifier tube is optimized for reduction of the transit time variance for photoelectrons from the photocathode surface to a photoelectron detector. The photoelectron detector, on which an image need not be formed in this case, has, for example, a comparatively small entrance surface and is arranged in or near a cross-over of the photoelectrons.
Abstract:
A photoelectric tube, preferably a photomultiplier tube comprises a photoemissive cathode deposited on the inner faceplate of the tube envelope and a dynode assembly mounted within the envelope. The tube includes a generator containing an alkali metal source for deposition of alkali metal onto the cathode surface. The generator has means for directing the alkali metal vapors substantially toward the cathode surface and for preventing the alkali metal vapors from substantially depositing on the dynode assembly.
Abstract:
The ion-electron converter is primarily intended for the measurement of small positive ion currents. The essential feature of the converter is its curved conversion electrode which generates an electrostatic field with favorable ion-optical properties; in addition, it avoids high field strength at the conversion electrode, thus reducing spurious field electron emission. Both properties result in an ion detector of high efficiency and sensitivity for positive ions.
Abstract:
An electronic sampling head comprising a housing having a path for impinging radiation, a photoemissive element positioned across said path, photoelectron ejection means positioned in proximity to said photoemissive element, means for applying ultrashort sampling potential differences between said photoemissive element and said photoelectron ejection means for accelerating photoelectrons emitted by said photoemissive element in response to said incident radiation, and means for detecting said photoelectrons all resulting in the capability of detecting high-speed radiation phenomena with waveform fidelity.