Abstract:
An electrodeless bulb has a hollow quartz tube, with a solid stem extending from one end and a short hollow tip extending from the other end. The hollow interior of the tube extends into the tip with the same diameter as in the tube, but the wall thickness of the tip is reduced from that of the tube. The bulb is charged with an amount of indium bromide and traces of other metal halides to adjust light spectrum and a filling of xenon gas.
Abstract:
A plasma lighting system is disclosed. Interference with an electronic device using the same band as that of the plasma lighting system can be avoided by changing the shape of vanes constituting a magnetron, and a filament current of the magnetron at an initial starting stage and that in a normal state are adjusted to be different, thus avoiding interference with a wireless LAN and attenuating noise, and a resonator has a mash form to increase efficiency. Because a rectangular waveguide is bent substantially at a right angle, and the magnetron and the resonator are disposed at one side on the basis of a waveguide space of the waveguide, thus reducing the size and an installation space of the plasma lighting system.
Abstract:
A dielectric waveguide integrated plasma lamp (DWIPL) with a body comprising at least one dielectric material having a dielectric constant greater than approximately 2, and having a shape and dimensions such that the body resonates in at least one resonant mode when microwave energy of an appropriate frequency is coupled into the body. A dielectric bulb within a lamp chamber in the body contains a fill which when receiving energy from the resonating body forms a light-emitting plasma. The bulb is transparent to visible light and infrared radiation emitted by the plasma. Radiative energy lost from the plasma is recycled by reflecting the radiation from thin-film, multi-layer coatings on bulb exterior surfaces and/or lamp chamber surfaces back into the bulb. The lamp further includes two- or three-microwave probe configurations minimizing power reflected from the body back to the microwave source when the source operates: (a) at a frequency such that the body resonates in a single mode; or (b) at one frequency such that the body resonates in a relatively higher mode before a plasma is formed, and at another frequency such that the body resonates in a relatively lower order mode after the plasma reaches steady state.
Abstract:
An electrodeless plasma lamp and method of generating light are described. The lamp may comprise a lamp body, a source of radio frequency (RF) power and a bulb. The lamp body may comprise a solid dielectric material and at least one conductive element within the solid dielectric material. The source of RF power is configured to provide RF power and an RF feed configured to radiate the RF power from the RF source into the lamp body. One or more tuning mechanisms allow tuning of the lamp body to a given resonant frequency. The bulb is positioned proximate the lamp body and contains a fill that forms a plasma when the RF power is coupled to the fill from the lamp body. The at least one conductive element is configured to concentrate an electric field proximate the bulb.
Abstract:
An electrodeless plasma lamp and method of generating light are described. The lamp may comprise a lamp body, a source of radio frequency (RF) power and a bulb. The lamp body may comprise a solid dielectric material and at least one conductive element within the solid dielectric material. The source of RF power is configured to provide RF power and an RF feed configured to radiate the RF power from the RF source into the lamp body. The bulb is positioned proximate the lamp body and contains a fill that forms a plasma when the RF power is coupled to the fill from the lamp body. The at least one conductive element is configured to concentrate an electric field proximate the bulb.
Abstract:
In an example embodiment, an electrodeless plasma lamp is provided which comprises a dielectric body having an effective dielectric constant greater than two. The dielectric body may have a surface with a first region coated with an electrically conductive material and a second region that is not coated with the electrically conductive material. A bulb is located proximate to the second region of the dielectric body and having an outer surface area and the second region may have an uncoated surface area that is less than about sixty percent (60%) of the outer surface area of the bulb. A power source is coupled to the dielectric body to provide radio frequency power to the dielectric body at a frequency that resonates at a fundamental mode in the dielectric body. The bulb contains a fill that forms a plasma when the radio frequency power is provided from the dielectric body through the second region.
Abstract:
An electrodeless plasma lamp array structure uses multiple plasma lamps to produce large amounts of electromagnetic radiation (visible, IR, UV, or a combination of visible, IR, and UV). An M by N array configuration is powered by either a single RF power source or multiple RF power sources. The array incorporates controllers to adjust the power delivered from the RF power source to each lamp within the array. By adjusting the delivered RF power, the intensity of electromagnetic radiation that is emitted from each lamp is controlled independently allowing for the creation of an array of lamps that emit electromagnetic radiation of varying intensity levels at different places within the array. Using lamps with different color temperatures as part of the array allows the color temperature and the color rendering index of the illumination to achieve different lighting conditions.
Abstract translation:无电极等离子体灯阵列结构使用多个等离子体灯产生大量的电磁辐射(可见光,IR,UV或可见光,IR和UV的组合)。 M / N阵列配置由单个RF电源或多个RF电源供电。 该阵列包含控制器,用于调整从RF电源传送到阵列内的每个灯的功率。 通过调节传送的RF功率,独立地控制从每个灯发射的电磁辐射的强度,允许产生在阵列内的不同位置发射不同强度水平的电磁辐射的灯阵列。 使用具有不同色温的灯作为阵列的一部分允许照明的色温和显色指数达到不同的照明条件。
Abstract:
A plasma lamp for an electrodeless plasma lamp having a dielectric waveguide body and a bulb positioned, at least in part, in the waveguide body and having at least one end protruding from the waveguide body. A probe is used to couple power into the waveguide body. The power resonates in the waveguide body and ignites a plasma in the bulb. By having one or both ends of the bulb extend beyond the surface of the waveguide body, the ends of the bulb are exposed to reduced electric field intensity, resulting in longer bulb lifetime due to reduced plasma impingement on the interior surfaces of the bulb.
Abstract:
An electrodeless plasma lamp is described comprising a lamp body including a solid dielectric material. The lamp includes a bulb received at least partially within an opening in the solid dielectric material and a radio frequency (RF) feed configured to provide power to the solid dielectric material. A conductive material is provided adjacent to the bulb to concentrate the power proximate the bulb. The conductive material may be located below an upper surface of the solid dielectric material. The conductive material may modify at least a portion of an electric field proximate the bulb so that the portion of the electric field is oriented substantially parallel to an upper surface of the lamp body.
Abstract:
An electrodeless plasma lamp and method of generating light are described. The lamp may comprise a lamp body, a source of radio frequency (RF) power and a bulb. The lamp body may comprise a solid dielectric material and at least one conductive element within the solid dielectric material. The source of RF power is configured to provide RF power and an RF feed configured to radiate the RF power from the RF source into the lamp body. One or more tuning mechanisms allow tuning of the lamp body to a given resonant frequency. The bulb is positioned proximate the lamp body and contains a fill that forms a plasma when the RF power is coupled to the fill from the lamp body. The at least one conductive element is configured to concentrate an electric field proximate the bulb.