Abstract:
An apparatus described herein is an LC tank circuit that may include a capacitance, a first inductance, and a second inductance. The first inductance and the second inductance may each be center tapped coils.
Abstract:
A variable capacitance unit that configures a voltage controlled piezoelectric oscillator including a first variable capacitance diode, a first condenser connected in parallel with the first variable capacitance diode, the second variable capacitance diode, a second condenser inserted and connected between a cathode of the first variable capacitance diode and an anode of the second variable capacitance diode, a third condenser inserted and connected between an anode of the first variable capacitance diode and a cathode of the second variable capacitance diode. The external control voltage is applied to the first variable capacitance diode and the second variable capacitance diode so that respective polarities thereof are reversed.
Abstract:
A FET transistor voltage-controlled oscillator is provided that includes a crossed-coupled inductor capacitor tank (LC-Tank) transistor voltage-controlled circuit having a first transistor and a second transistor, as well as a transistor frequency multiplying circuit having a third transistor and a fourth transistor. In the design, the gate of the first transistor is connected to the drain of the second transistor, and the gate of the second transistor is connected to the drain of the first transistor. Then, the source of the third transistor is connected to the source of the first transistor, and the source of the fourth transistor is connected to the source of the second transistor. Last, the gate of the third transistor is connected to the gate of the fourth transistor, and the drain of the third transistor is connected to the drain of the fourth transistor. Therefore, the parasitic capacitance present in the first transistor and the parasitic capacitance present in the second transistor generate an effect similar to two capacitors connected in series, via the transistor frequency multiplying circuit. The effect reduces the total capacitance of the voltage-controlled oscillator, to increase the working frequency of the voltage-controlled circuit and allow a circuit having the voltage-controlled circuit to operate at a high frequency.
Abstract:
A VCO device is described that has pre-compensation. Digitally switchable compensation capacitors are selectively activated to adjust operation of the VCO to mitigate undesirable operational effects. In some example embodiments, the digitally switchable compensation capacitors of the VCO are adjusted to compensate for the effects of activating (from a quiescent state) an output buffer driven by the VCO.
Abstract:
Aspects of a method and system for transmission and/or reception of signals up to EHF utilizing a delay circuit are provided. In this regard, a transceiver may comprise at least one delay circuit which may, in turn, comprise a plurality of delay elements and a variable capacitance. The delay circuit may be enabled to delay a first signal, via at least a portion of the delay elements and via the variable capacitance, to generate a second signal that is 90° phase shifted relative to said first signal. Additionally, the delay circuit may be enabled to mix the first signal with the second signal to generate a third signal that is twice a frequency of the first signal. The third signal may be utilized for up-conversion and/or down-conversion of signals to and/or from baseband, intermediate frequencies, and/or RF frequencies of up to EHF.
Abstract:
A fully integrated, programmable mixed-signal radio transceiver comprising a radio frequency integrated circuit (RFIC) which is frequency and protocol agnostic with digital inputs and outputs, the radio transceiver being programmable and configurable for multiple radio frequency bands and standards and being capable of connecting to many networks and service providers. The RFIC includes a tunable resonant circuit that includes a transmission line having an inductance, a plurality of switchable capacitors configured to be switched into and out of the tunable resonant circuit in response to a first control signal, and at least one variable capacitor that can be varied in response to a second control signal, wherein a center resonant frequency of the resonant circuit is electronically tunable responsive to the first and second control signals that control a first capacitance value of the plurality of switchable capacitors and a second capacitance value of the at least one variable capacitor.
Abstract:
Embodiments feature techniques and systems for digitally tuning a crystal oscillator circuit. In one aspect, embodiments feature a method for making a digitally tuned crystal oscillator circuit. The method involves receiving a multi-bit input signal into a digital modulator, modulating the multi-bit input signal with the digital modulator by oversampling or by noiseshaping and oversampling to produce a digitally-modulated output signal having a lower number of bits than the multi-bit input signal. The method also involves coupling a tuning capacitor with the crystal oscillator circuit, and coupling the digitally-modulated output signal from the digital modulator to the crystal oscillator circuit and the tuning capacitor. In some embodiments, the digital modulator can a delta-sigma modulator, a noiseshaping modulator, a delta modulator, a pulse width modulator, a differential modulator, or a continuous-slope delta modulator.
Abstract:
A gain compensator compensates for the gain variation of a varactor-tuned voltage tuned oscillator (VCO) in a phase lock loop (PLL). The VCO includes a parallel LC circuit having multiple fixed capacitors that can be switched-in or switched-out of the LC circuit according to a capacitor control signal to perform band-select tuning of the VCO. The gain compensator compensates for the variable VCO gain by generating a charge pump reference current that is based on the same capacitor control signal that controls the fixed capacitors in the LC circuit. The gain compensator generates the charge pump reference current by replicating a reference scale current using unit current sources. The number of times the reference scale current is replicated is based on the fixed capacitance that is switched-in to the LC circuit and therefore the frequency band of the PLL. The reference scale current is generated based on a PLL control that specifics certain PLL characteristics such as reference frequency, loop bandwidth, and loop damping. Therefore, the reference pump current can be efficiently optimized for-changing PLL operating conditions, in addition to compensating for variable VCO gain.
Abstract:
To present a variable capacity circuit and a control method of variable capacity capable of extending a variable capacity width of a variable capacity element to a maximum extent without increasing an element area of the variable capacity element or varying the level of control voltage, a variable capacity circuit 2 comprises a capacity value control circuit 11, varactors VA1 and VA2, and resistance elements R1 and R2. The capacity value control circuit 11 issues a variable output voltage CNTOUT depending on input control voltage VT, and controls the potentials at both ends of the varactors simultaneously. The output voltage CNTOUT is variably adjusted so as to have a negative correlation to the control voltage VT. Variable width of terminal voltage VD can be extended from a variable width SA1 to a variable width SA1a (range is +/−(Vcc1)). As a result, as shown in FIG. 5B, the changeable area of a varactor capacity value CV can be extended from a changeable area CA1 to a changeable area CA1a.
Abstract:
A voltage controlled oscillator includes a resonator configured to resonate with an initial oscillation frequency during starting period of oscillation and a steady oscillation frequency during a steady state oscillation. The resonator includes a film bulk acoustic resonator having a series resonance frequency higher than the steady oscillation frequency. A negative resistance circuit configured to drive the resonator, has a positive increment for reactance in the steady state oscillation compared with reactance in the starting period.