Abstract:
Rollover operative digital to analog converter (DAC). With respect to a codeword that is provided to a DAC, a processing module (e.g., a rollover processor) operates to compare the codeword to threshold(s) in accordance with adaptively partitioning the codeword into one or more sub-codewords when the codeword has a magnitude greater than at least one of the thresholds. In instances that the codeword is less than a threshold, the codeword may be provided directly to a DAC for use in generating a first analog signal. However, if the codeword is a larger than a threshold, then that portion of the codeword which is greater than the threshold may be provided to an alternative component such as one or more auxiliary or additional DACs, one or more other circuitry components, etc. in accordance with generating at least one additional analog signal to be combined with the first analog signal.
Abstract:
Systems and methods for digital upconversion of baseband television signals that can be used in cable television headend systems are provided. In one embodiment, the system includes a digital frequency adjustment system and a digital to analog conversion system. In a feature of the embodiment, the digital frequency adjustment system consists of set of digital upconversion and upsample elements that shift upwards the frequency of baseband signals. In a further feature of the embodiment, a tree structure of sets of upsample and upconversion elements is used. In another embodiment, the system includes digital and analog frequency adjustment systems in which the frequencies of the input signals are partially upshifted within both the digital and analog domains. Methods for digital upconversion of television signals are also provided.
Abstract:
Systems and methods for perform a method for reducing interference from Multimedia over Coax Alliance (MOCA) signals in a cable television double conversion tuner are provided. The method may include receiving an indication of the channel in which MoCA signals are operating. When the channel in which the MoCA signals are operating is in the same frequency band as an intermediate frequency of the tuner, the method may require shifting an intermediate frequency of the tuner out of the frequency band occupied by the channel in which the MoCA signals are operating.
Abstract translation:提供了一种用于在有线电视双转换调谐器中执行减少Multimedia over Coax Alliance(MOCA)信号干扰的方法的系统和方法。 该方法可以包括接收MoCA信号正在操作的信道的指示。 当MoCA信号操作的信道处于与调谐器的中频相同的频带中时,该方法可能需要将调谐器的中频从MoCA信号为 操作。
Abstract:
A gain compensator compensates for the gain variation of a varactor-tuned voltage tuned oscillator (VCO) in a phase lock loop (PLL). The VCO includes a parallel LC circuit having multiple fixed capacitors that can be switched-in or switched-out of the LC circuit according to a capacitor control signal to perform band-select tuning of the VCO. The gain compensator compensates for the variable VCO gain by generating a charge pump reference current that is based on the same capacitor control signal that controls the fixed capacitors in the LC circuit. The gain compensator generates the charge pump reference current by replicating a reference scale current using unit current sources. The number of times the reference scale current is replicated is based on the fixed capacitance that is switched-in to the LC circuit and therefore the frequency band of the PLL. The reference scale current is generated based on a PLL control that specifics certain PLL characteristics such as reference frequency, loop bandwidth, and loop damping. Therefore, the reference pump current can be efficiently optimized for changing PLL operating conditions, in addition to compensating for variable VCO gain.
Abstract:
A method and system for monitoring and compensating the performance of an operational circuit is provided. The system includes one or more integrated circuit chips and a controller. Each integrated circuit chip includes one or more operational circuits, each operational circuit having at least one controllable circuit parameter. Each integrated circuit chip also includes a process monitor module at least partially constructed thereon. The controller is coupled to each process monitor module and to each operational circuit. The controller includes logic for evaluating the performance of an operational circuit based on data obtained from process monitor module and operational circuit related data stored in a memory. Based on the evaluation, the controller determines whether any deviations from desired or optimal performance of the circuit exist. If deviations exist, the controller generates a control signal to initiate adjustments to the operational circuit to compensate for the deviations.
Abstract:
A gain compensator compensates for the gain variation of a varactor-tuned voltage tuned oscillator (VCO) in a phase lock loop (PLL). The VCO includes a parallel LC circuit having multiple fixed capacitors that can be switched-in or switched-out of the LC circuit according to a capacitor control signal to perform band-select tuning of the VCO. The gain compensator compensates for the variable VCO gain by generating a charge pump reference current that is based on the same capacitor control signal that controls the fixed capacitors in the LC circuit. The gain compensator generates the charge pump reference current by replicating a reference scale current using unit current sources. The number of times the reference scale current is replicated is based on the fixed capacitance that is switched-in to the LC circuit and therefore the frequency band of the PLL. The reference scale current is generated based on a PLL control that specifics certain PLL characteristics such as reference frequency, loop bandwidth, and loop damping. Therefore, the reference pump current can be efficiently optimized for-changing PLL operating conditions, in addition to compensating for variable VCO gain.
Abstract:
Circuitry to remove switches from signal paths in integrated circuit programmable gain attenuators. Programmable gain attenuators and programmable gain amplifiers commonly switch between signal levels using semi-conductor switches. Such switches may introduce non-linearities in the signal. By isolating the switches from the signal path linearity of the PGA can be improved.
Abstract:
A gain compensator compensates for the gain variation of a varactor-tuned voltage tuned oscillator (VCO) in a phase lock loop (PLL). The VCO includes a parallel LC circuit having multiple fixed capacitors that can be switched-in or switched-out of the LC circuit according to a capacitor control signal to perform band-select tuning of the VCO. The gain compensator compensates for the variable VCO gain by generating a charge pump reference current that is based on the same capacitor control signal that controls the fixed capacitors in the LC circuit. The gain compensator generates the charge pump reference current by replicating a reference scale current using unit current sources. The number of times the reference scale current is replicated is based on the fixed capacitance that is switched-in to the LC circuit and therefore the frequency band of the PLL. The reference scale current is generated based on a PLL control that specifics certain PLL characteristics such as reference frequency, loop bandwidth, and loop damping. Therefore, the reference pump current can be efficiently optimized for changing PLL operating conditions, in addition to compensating for variable VCO gain.
Abstract:
Circuitry to remove switches from signal paths in integrated circuit programmable gain attenuators. Programmable gain attenuators and programmable gain amplifiers commonly switch between signal levels using semi-conductor switches. Such switches may introduce non-linearities in the signal. By isolating the switches from the signal path linearity of the PGA can be improved.
Abstract:
A resonant oscillator circuit includes an active device and a resonator that causes the active device to oscillate at a resonant frequency of the resonator. The active device includes one or more transistors that are DC biased using one or more resistors. The bias resistors generate thermal noise that is proportional to the resistance value. An external inductor circuit is connected across the output terminals of the active device and in parallel with the resonator. The external inductor circuit shorts-out at least some of the thermal noise that is generated by the bias resistors, and thereby reduces the overall phase noise of the resonant oscillator.