Abstract:
A system that incorporates teachings of the subject disclosure may include, for example, a method for analyzing a wide frequency band with respect to signal power levels in specified narrow frequency bands, detecting narrow band signal power levels received in the specified narrow frequency bands, determining an average composite wideband power level from the narrow band signal power levels, determining an adaptive threshold from the average composite wideband power level, detecting narrow band interference according to the adaptive threshold, and configuring a filter to substantially suppress the detected narrow band interference. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, detecting an interferer having a periodic time of recurrence and a periodic spectral frequency range, identifying a spectral segment of a plurality of spectral segments of a wideband radio system having a time of occurrence and an operating frequency range that overlaps with the periodic time of recurrence and the periodic spectral frequency range of the interferer, identifying a communication device utilizing the spectral segment for transmitting data in accordance with a segment schedule assigned to the communication device, and generating an updated segment schedule by modifying the segment schedule of the communication device to avoid utilizing an affected portion of the spectral segment during the periodic time of recurrence and the periodic spectral frequency range of the interferer. Other embodiments are disclosed.
Abstract:
A system that incorporates teachings of the subject disclosure may include, for example, a method for measuring power levels of signals provided by a receiver configured to scan radio frequency signals over a wide frequency band, calculating an average power level from at least a portion of the measured power levels, determining a threshold, detecting interference in the wide frequency band based on the threshold, the average power level, or both, and causing a null that substantially suppresses the interference received by the receiver. Other embodiments are disclosed.
Abstract:
A system that incorporates teachings of the subject disclosure may include, for example, a method for analyzing a wide frequency band with respect to signal power levels in specified narrow frequency bands, detecting narrow band signal power levels received in the specified narrow frequency bands, determining an average composite wideband power level from the narrow band signal power levels, determining an adaptive threshold, tracking narrow band interferers according to the adaptive threshold and the average composite wideband power level, and transmitting a report descriptive of the narrow band interferers. Other embodiments are disclosed.
Abstract:
Systems and methods for generating and transmitting ranging signals and data signals from transmitters in a wireless positioning system, and also for receiving and processing those signals at a mobile device. Different approaches are used, including separately transmitting the ranging signals and the data signals based on time, frequency, code, phase, or any combination thereof.
Abstract:
An exemplary wireless communication network that includes a base that communicates with remote units located in a cell of the network. The base concatenates information symbols with a preamble corresponding to a destination remote unit. One or more remote units communicating with the base each concatenates information symbols with a preamble corresponding to that remote unit. An adaptive receiver system for a base unit rapidly adapts optimal despreading weights for reproducing information symbols transmitted from multiple remote units. A transmitter system for a base unit concatenates information symbols with a preamble associated with a remote unit in the cell. An adaptive receiver system for a remote unit in a communication network rapidly adapts optimal weights for reproducing a signal transmitted to it by a specific base unit in the network.
Abstract:
Techniques to increase capacity in a wireless communications system. Systematic non-transmission, or “blanking,” of minimal-rate frames transmitted in a communications system is provided. In an exemplary embodiment, eighth rate frames in a cdma2000 voice communications system are systematically substituted with null-rate frames carrying zero traffic bits. The receiver detects the presence of null rate or non-null rate transmissions and processes the received frames accordingly. Techniques for changing the pilot transmission gating pattern to assist the receiver in detecting null rate frames are provided. In another aspect, early termination of a signal transmission over a wireless communications link is provided. In an exemplary embodiment, a base station (BS) transmits power control groups (PCG's) for a frame over a forward link (FL) to a mobile station (MS) until accurate reception of the frame is acknowledged by the MS over a reverse link (RL), possibly before all PCG's of the frame are received.
Abstract:
A system that incorporates the subject disclosure may include, for example, a method for mitigating interference by filtering or redirection of communications traffic. Other embodiments are disclosed.
Abstract:
An apparatus and method for generating a composite signal includes electronics configured to modulate a carrier utilizing a finite set of composite signal phases to generate a composite signal, the finite set of composite signal phases being determined through an optimization process that minimizes a constant envelope for the phase modulated carrier, subject to constraints on desired signal power levels of the signals to be combined and either zero or one or more relative phase relationships between the signals. The apparatus and method can be extended to generating an optimized composite signal of different frequencies.
Abstract:
Receivers in a mobile device are configured to mitigate receiver overload and fully or nearly-fully utilize available spectrum for communication. Configuration is dictated at least in part by at least one of radio link quality or available receiver specifications, and it can be affected by the mobile device or a base station that serves the mobile device. Receiver configuration includes various spectrally asymmetric receivers that tune respective disparate portions of the available spectrum to maximize utilization thereof in the spectral regions prone to overload conditions. In severe overload conditions, a single receiver can be configured to operate in a frequency band spectrally adjacent to a sub-band that leads to overload conditions when employed for telecommunication. To improve performance, the single receiver configuration can be supplemented with at least one of transmit diversity operation, asymmetric multicarrier spreading, or downlink power boost of asymmetrical multicarrier spreading.