Abstract:
An electrophotographic image forming apparatus has defined therein a longitudinal or process direction, and includes plural photoconductive drums, each having an image forming surface. Multiple printhead units are provided for generating image information bearing laser beams. Each printhead unit includes optics for scanning the laser beam to form a plurality of scan lines extending across the corresponding photoconductive drum in a transverse scan direction which traverses the process direction. Registration of a scan line from one printhead with a corresponding scan line from another printhead in the process direction is achieved by adjusting the time required to translate one of the scan lines from a location where it is electrostatically formed to a location where it is transferred to an image receiving medium. Adjustment of the translation time may be achieved by modifying the rotational speed of the associated drum. Printhead optics may include rotatable polygonal prisms having plane reflective surfaces which are started in a random phase relationship. Control of the drum rotational speeds is also effective to achieve a predetermined apparent scanning phase relationship among the prisms.
Abstract:
An image is accurately recorded by a light beam on a PS plate wound on a drum which is rotating at a constant speed. A rotary encoder detects information of a recording position in a main scanning direction by the light beam that is emitted from an optical unit to the PS plate. Based on the detected information, a PLL circuit of a recording synchronizing signal generating unit generates an original clock. Pulses of the original clock are counted by a decimating counter, which outputs a decimating instruction to decimate a pulse from the original clock each time the count reaches a preset count. Based on the decimating instruction, a pulse is decimated from the original clock, and a decimated clock is frequency-divided at a fixed frequency-dividing ratio by a frequency divider, which outputs a pixel clock for recording the image. Since the frequency of the pixel clock is varied by decimating the original clock based on the preset count, the image can accurately be recorded on the PS plate by determining in advance the preset count depending on the positional relationship between the PS plate and the optical unit.
Abstract:
A first polygonal motor correction value and a first drum motor correction value are provided to the polygonal motor and the photosensitive drum motor so that an image formed by a printer unit has a 100% magnification on the basis of data provided from a reference pattern generating unit which generates an ideal pattern data having no magnification error. Next, a document, on which a predetermined pattern is printed, is scanned by a scanner unit, and then, a second polygonal motor correction value and a carriage motor correction value are provided to the polygonal motor and the carriage motor so that an image printed using the printer unit has a 100% magnification. In the case of forming an image by the printer unit in a state that a main scanning/feed direction of the scanned image is inverted, an image is formed using the first polygonal motor correction value, the carriage motor correction value and a second drum motor correction value calculated from the first and second polygonal motor correction values and the first drum motor correction value.
Abstract:
A film scanner performs a main-scan of a film by an imaging device and performs a sub-scan of the imaging device so as to enable scanning at any resolution using a simple configuration. The scanning mechanism, for the sub-scan of the film with respect to the imaging device, has a transport table for supporting the film held by a film holder and transporting it in a sub-scan direction and a transport mechanism for moving the transport table in the sub-scan direction. The source of the drive power of the transport mechanism is a scan motor (stepper motor) driven by a pulse signal output from a motor drive circuit. The motor drive circuit is configured to enable micro-stepping of the scan motor.
Abstract:
An optical scanning unit used in an image forming apparatus having a latent image carrier includes a light emitter, a rotary deflector, an inclination adjustment unit, and a controller. The light emitter emits a light beam. The rotary deflector deflects and scans the light beam onto a surface of the latent image carrier. The inclination adjustment unit adjusts an inclination of a scan line corresponding to the light beam relative to a reference scan line on the latent image carrier. The controller changes at least one of a linear velocity of the latent image carrier and a rotation speed of the rotary deflector so as to change a ratio between the linear velocity of the latent image carrier and a scan speed of the light beam, and controls the inclination adjustment unit based on the ratio to keep the scan line from inclining relative to the reference scan line.
Abstract:
The image reading apparatus conveys a reading unit or a document to read the document. Conveyance is implemented by motor control based on a target position trajectory. The reading unit reads the document each time a line start signal is inputted. When a predetermined condition is satisfied, the reading operation is invalidated. A conveyance position at a timing to start the first reading operation invalidated is specified as an interrupted position. The object is arranged at a conveyance restart position moved back from the interrupted position. A target position trajectory is newly set. A conveyance time from the conveyance restart position to the interrupted position defined by the target position trajectory is an integral multiple of an output cycle of the line start signal. The motor control based on the target position trajectory is started at a timing coinciding with an output timing of the line start signal.
Abstract:
Methods and systems for calibrating media indexing errors in a printing device are provided. In one embodiment, the method comprises feeding a calibration media through a printing device, sensing the position of the media as it moves through the printing device, sensing positions of a media indexing component as the media moves through the printing device, determining media indexing position errors based upon the sensed positions, and calculating a compensation factor to be applied based upon the errors. In some embodiments, parameters of a line and/or other function are determined from the error data and the parameters are utilized to calculate a compensation factor. Moreover, in some embodiments, it is determined what range the data fits within, and a predetermined compensation factor is determined based upon the range.
Abstract:
The invention provides an image reading apparatus that produces a precise image of an original document to prevent the read image from having distortion or irregular density, by driving a DC motor, which drives an image reading unit in a scanning direction, at a constant speed suitable for a document to be read. In addition, the image reading apparatus prevents position errors or misalignment at the start of the image reading, or at a restart of the image reading after the image reading is paused. A speed control circuit provides feedback to a DC motor to synchronize a time interval detected by a pulse interval detecting circuit with a time interval set by an interval setting register, so that the DC motor is operated at a constant speed. A counter counts the number of signals output from an encoder. After the speed of the DC motor is stabilized, a timing of signals output from a CCD drive unit to the image reading unit is synchronized with a timing of the signals generated by the encoder. As a count in the counter reaches a predetermined number, an actual image reading is started. Thus, the position errors or misalignment are prevented in the produced image.
Abstract:
An image reading apparatus prevents degradation of image quality and a delay in the image reading time which are caused by interruption of reading of image data. A speed at which a host computer reads image data from an image reading apparatus and temporarily stores it therein is examined. If the resulting speed is lower than a reference value which has been set so that an operation to avoid an overflow of a buffer RAM in the image reading apparatus may not be caused, the sub-scanning speed of the image reading apparatus is set lower, and the image is read at the lower speed.
Abstract:
The relationship between first and second side images is evaluated to determine how the position of the paper and/or the size and arrangement of an image can be manipulated to compensate for paper shrinkage caused by fusing. Show through is reduced by performing setup to adjust a pixel clock frequency and/or a photoreceptor speed, determining a residual magnification error, determining margin shifts to compensate for the residual magnification error, and applying the margin shifts. Paper shrink effects on registration can be compensated for using determinations made during a typical printer setup. Show through errors can be reduced without using a paper conditioner to pre-shrink or re-wet the paper. In simplex and duplex printing, the show through errors worsen as the image moves away from the registration edge. Using information obtained during setup, a margin shift is determined that results in a significant reduction in the maximum show through for each image.