Abstract:
An anti-static protection circuit includes a first discharge unit and a second discharge unit. The first discharge unit is connected to a port of an electronic device, and includes a number of first sharp turning points. The first sharp turning points absorb static electricity flowing to the first discharge unit from the port, and discharge part of the static electricity to the air. The second discharge unit is grounded and includes a number of second sharp turning points spaced apart from and directly opposing to the corresponding first sharp turning points of the first discharge unit. The second sharp turning points absorb part of the static electricity on the first sharp turning points, and discharges the part of the static electricity to the ground. A related electronic device employing the protection circuit is also provided.
Abstract:
A through wiring substrate includes a substrate having a first face and a second face; and a through-wire formed by filling, or forming a film of, an electrically-conductive substance into a through-hole, which penetrates between the first face and the second face. The through-hole has a bend part comprising an inner peripheral part that is curved in a recessed shape and an outer peripheral part that is curved in a protruding shape, in a longitudinal cross-section of the through-hole, and at least the inner peripheral part is formed in a circular arc shape in the longitudinal cross-section.
Abstract:
A printed wiring board including a core substrate, a build-up layer formed over the core substrate and including a first insulating layer, a conductor layer formed over the first insulating layer, and a second insulating layer formed over the conductor layer, and one or more wiring patterns formed over the first insulating layer. The conductor layer includes conductor portions, and the conductor portions have notched portions, respectively, facing each other across the wiring pattern.
Abstract:
A method for forming a film pattern by disposing a functional fluid on a substrate, includes: forming a partition wall that includes a first opening that corresponds to a first film pattern and a second opening that corresponds to a second film pattern; and disposing a droplet of the functional fluid into the first opening, so that the functional fluid is disposed into the second opening by a self-flow of the functional fluid; wherein: the first film pattern is linear; the second film pattern is narrower than the first film pattern, and is connected to the first film pattern at a rear edge thereof; and a front edge of the second film pattern has a missing part in which a corner of a rectangular contour is missing.
Abstract:
A differential transmission line includes: a substrate; a ground conductor layer; and a first and a second signal conductor disposed in parallel to each other on the substrate. The first signal conductor and the ground conductor layer compose a first transmission line, whereas the second signal conductor and the ground conductor layer compose a second transmission line. The first transmission line and the second transmission line compose a differential transmission line. The differential transmission line includes a curved region, with a straight region being connected to each end of the curved region. In the ground conductor layer in the curved region, a plurality of slots orthogonal to a local transmission direction of signals in the curved region are formed, and the slots are connected to one another on the inner side of the curvature.
Abstract:
An integrated circuit chip module includes a first integrated circuit chip including a first power source pad for a first power voltage and an adjacent second power source pad for a second power voltage, the first power voltage being higher than the second power voltage, a second integrated circuit chip including a third power source pad for the first power voltage and an adjacent fourth power source pad for the second power voltage, and a wiring board including a first power source wire electrically connected to the first power source pad, a second power source wire electrically connected to the second power source pad, a third power source wire electrically connected to the third power source pad, and a fourth power source wire electrically connected to the fourth power source pad. Distance between the first and second power source wires is shorter than distance between the first or second power source wires and the third or fourth power source wires, and distance between the third and fourth power source wires is shorter than distance between the first or second power source wires and the third or fourth power source wires.
Abstract:
A differential transmission line includes: a substrate; a ground conductor layer; and a first and a second signal conductor disposed in parallel to each other on the substrate. The first signal conductor and the ground conductor layer compose a first transmission line, whereas the second signal conductor and the ground conductor layer compose a second transmission line. The first transmission line and the second transmission line compose a differential transmission line. The differential transmission line includes a curved region, with a straight region being connected to each end of the curved region. In the ground conductor layer in the curved region, a plurality of slots orthogonal to a local transmission direction of signals in the curved region are formed, and the slots are connected to one another on the inner side of the curvature.
Abstract:
On the circuit surfaces of integrated circuit chips, there are adjacently laid out a power source pad for a power source wire at a plus voltage side and a power source pad for a power source wire at a minus voltage side. On a single-surface printed wiring board, a first set of two power source wires and a second set of two power source wires are flip-chip mounted with two power source pads of the integrated circuit chips respectively. The first and second sets of the power source wires are formed substantially in parallel with each other, by maintaining substantially constant wire widths and substantially constant wire interval. Near the outer periphery of the printed wiring board, the first and second sets of the power source wires are bent smoothly to follow the periphery.
Abstract:
Improvement in the quality of photoresist images has been achieved. The data file in which the full description of the photoresist image, including Optical Proximity Corrections, has been stored is split into two subfiles. The split is made on the basis of separating cell descriptions (where the density of lines is high) from peripheral area descriptions (where lines tend to be isolated). A suitable bias in the form of a small increase or decrease (as appropriate) of all dimensions in the subfile is then applied. After the application of bias, the subfiles are merged back into a single data file and processing proceeds as usual.
Abstract:
The radiation noise suppression effect is enhanced by providing an insulation layer which is formed so that the circuit pattern is covered excepting at least a part of power source pattern or ground pattern on the substrate on which circuit pattern is formed, and a conductive layer which is formed so as to be connected to the uninsulated part of the power source pattern or the ground pattern on the insulation layer, by modifying pattern shape of the conductive layer and the insulation layer or by increasing or reducing the number of these layers.