Abstract:
A method of processing peat for use in treating a contaminated aqueous solution, especially storm water runoff entering a sewer system. The method includes mixing raw peat with heated sulfuric acid to produce a slurry. The slurry is dried and then mixed with a binder medium to produce an aggregate material. The aggregate material is extruded to form a plurality of pellets. The plurality of pellets are then baked in an oven at a temperature in the range of approximately 900-1000 degree F. Peat processed in accordance with the present invention serves as both an ion exchange material as well as an organic retention material. A filter canister for maintaining pelletized peat is also disclosed.
Abstract:
A mobile process to reclaim spent aqueous glycol solutions used as heat transfer fluids and which contains deleterious contaminants, oil/grease, corrosion products, and additives such as buffers and corrosion inhibitors. Particulate contaminates and oil/grease are removed by passing the solution through an ultrafiltration membrane. The dissolved contaminants are removed by passing through a series of ion exchange resin (IER) vessels. The reclaimed glycol solution is reused after replacing the required additives. One embodiment provides for central processing of the filtration and absorption media housed in a mobile enclosure, such as a trailer. The mobile trailer may be used at various collection sites for cleaning and reprocessing spent glycols. After the media are spent, the mobile trailer is returned to a central processing facility for regeneration of the filtration and absorption media. The waste produced by the regeneration is concentrated at a single treatment and disposal facility.
Abstract:
A method of separating a material from a liquid sample comprising: providing a system for material separation having a stationary phase having a metalloporphyrin coordination compound or a metallophthalocyanine coordination compound or a mixture thereof; oxidizing or reducing the coordination compound, respectively, to an oxidized or reduced state at which the material will bind to the compound;applying a source of electric potential to the system; and contacting the oxidized or reduced coordination compound with a liquid sample containing the material under conditions effective to separate the material from the liquid.
Abstract:
A process for preparing a composite particulate material, comprising the steps of providing a particulate primary material having a primary softening temperature; providing a particulate support material having a support softening temperature; providing a particulate binder material having a softening temperature which is less than the primary softening temperature and the support softening temperature; mixing the primary material, the support material and the binder material so as to provide a substantially uniform mixture; and heating the mixture to a temperature greater than or equal to the softening temperature of the binder material and less than the primary softening temperature and the support softening temperature, whereby the binder material binds the primary material to the support material so as to provide a composite particulate material.
Abstract:
A potassium aluminosilicate is used as a filtration media for filtering water to remove dissolved oxygen, hardness and other dissolved gases and impurities from the water, such as ammonia, hydrogen, hydrogen sulfide and sodium sulfite. The particular potassium aluminosilicate is a mesoporous amorphous material formed under ultraviolet light or sunlight to produce pore sizes of 60 .ANG. to 250 .ANG. at ambient temperatures (20.degree. C.-35.degree. C.) and in a low relative humidity (5%-20%). Sodium may be displaced in the zeolite media by potassium so that advantageous removal of impurities in the water occurs without introducing sodium into the water. The potassium aluminosilicate of the present invention may be used as a second stage filter to a first stage filter composed of strong base anion media charge with potassium carbonate or bicarbonate.
Abstract:
The invention is for a process of removing anions from an organic solution, especially one having base labile components. The process comprises modifying an anion exchange resin by treatment with a solution of a source of anions less basic than the hydroxyl anion and contacting said modified ion exchange resin with an organic solution containing anions. The process is especially useful for treating photoresist compositions.
Abstract:
A particle loaded, porous, fibrous compressed or fused article comprises a nonwoven fibrous polymeric web, which preferably is thermoplastic, melt-extrudable, and pressure-fusible blown microfibrous web, and sorptive particles enmeshed in said web, the particle loaded fibrous article has a Gurley number of at least two seconds, and the article is useful in separation science. A method of preparation of the article and method of use is also disclosed.
Abstract:
A process for absorbing silver from photographic hypo solutions involves passing the hypo solution through a bed consisting of a multitude of a sponge product confined within a vessel. The sponge product is derived from an open-celled cellulosic sponge into which there has been incorporated 30% to 80% by weight of a polymer produced by the thermal interaction of polyethyleneimine (PEI) with a polycarboxylic acid. The polymer further contains an activating multivalent cation and between 90% and 300% water. Silver is eluted from the sponge product employing aqueous solutions of a complexing agent such as an ammonium compound or a cyanide compound. Following a water wash, the bed of sponge product is ready for its next cycle of silver absorption.
Abstract:
A method for the preparation of an ion exchange sorbent containing at least one anion exchange resin, a ferromagnetic substance, and a water permeable organic polymer binder, as well as a process for the use of said sorbent to separate removable anions from feedstreams containing said anion.
Abstract:
A method for removal of at least one contaminant from a liquid is described, wherein a first step in liquid is introduced into a first of a plurality of liquid treatment containers and brought into contact in a liquid-medium suspension with a first quantity of a solid contaminant recovery medium for removing the contaminant for a period of time sufficient to achieve a desired efficiency of recovery of the contaminant. The liquid is then cycled from the first liquid treatment container sequentially through each of the plurality of liquid treatment containers to a final liquid treatment container while contacting the liquid in each of the liquid treatment containers with additional quantities of the medium in liquid-medium suspension for periods of time sufficient to achieve the desired efficiency of recovery in each of the liquid treatment containers. At least a portion of the medium is cycled from the final liquid treatment container through the plurality of liquid treatment containers to the first liquid treatment container in a direction countercurrent to flow of the liquid so as to maintain essentially a constant medium concentration in each of the liquid treatment containers, with the medium being substantially separated from liquid prior to cycling from one container to another container. At least a portion of the medium is transferred from the first liquid treatment container into a medium recycling means, in which the medium is treated with a contaminant recovery liquid for regenerating the medium.