Abstract:
Process and apparatus for measuring optical, especially calorimetric, parameters on liquid, colored media, especially on wet lacquers, in which the liquid, colored medium is applied to a continuously moving, cylindrical support, a film of the liquid, colored medium forms on the continuously moving, cylindrical support, and optical, especially calorimetric, parameters are measured on the film of the liquid, colored medium.
Abstract:
A modulated light source emits light to illuminate a target surface which possesses a certain color and shade of color. Light that is reflected from the target surface is detected by an optical detector. The output from the optical detector is processed and fed back to the optical detector to compensate for any shift caused by ambient light, temperature or other external factors, and is differentially amplified to generate an output signal indicative of the color and shade of the target surface. The output signal from the differential amplifier is then demodulated by a synchronous detector to produce a substantially steady DC voltage that is indicative of the color or shade of color at the target surface. Where the target surface color shade is indicative of a certain measurable quantity or quality (such as an analyte concentration), the steady DC voltage is converted using a look-up table or mathematical formula into a corresponding quantity or quality measurement. In performing this conversion, compensation is made for any variations in modulated light source intensity due to temperature change.
Abstract:
An optical method to measure certain optical characteristics of starch-containing materials during and/or after processing. Certain properties of the processed starch-containing materials such as flake weight and starch availability can be accurately estimated from the measured optical characteristics.
Abstract:
An optical scanning system. In representative embodiments, an optical scanning system is disclosed which comprises at least one first photosensitive detector that is sensitive to light in a first frequency band, an exposure control circuit that is capable of exposing the first photosensitive detector for a first time period and at least one second photosensitive detector that is sensitive to light in a second frequency band. The second photosensitive detector is fixed at a first location relative to the first photosensitive detector. The exposure control circuit is capable of exposing the second photosensitive detector for a second time period with the second time period being longer than the first time period and the midpoint of the first time period occurring at a time proximate to the time of the midpoint of the second time period.
Abstract:
An alignment method is provided for a color scannerless range imaging system whereby the separate optical paths of colored texture and monochromatic range images may be precisely aligned. The range imaging system includes an illumination system for illuminating a scene with modulated infrared illumination, image forming optics for forming an image of the scene, optical means for forming first and second optical paths between the image forming optics and an image sensor, a transponder subject to modulation located in the first optical path for amplifying and converting infrared light to visible light to form a range image on the image sensor. The alignment method includes the steps of providing a target having alignment indicia that can be imaged in both infrared and visible regions of the spectrum, capturing an infrared image of the target using the first optical path, capturing a color image of the target using the second optical path, and adjusting at least one of the optical paths so that the captured images are coincident.
Abstract:
A bichromatic optical cell fitted with two emitters 11, 12 capable respectively of generating a first beam E1 and a second beam E2 of different wavelengths &lgr;1, &lgr;2, and a receiver 14 arranged in a manner to receive, at a fixed or a variable angle of incidence, a beam reflected or able to be influenced by an object, coming from one or other of the emitters. Means 15, 16 of polarizing the first beam E1 are provided and the cell is fitted with means S of selecting a mode of operation M1 of the polarized reflex type or a second mode of operation M2 of the proximity type. The selection means S activate one or other of the emitters 11, 12 depending on the mode selected and block one or other of the output channels 14a, 14b of the receiver 14 and/or configure one active optical receiving area 14c of the receiver.
Abstract:
An optical detection device for use in a color sorting apparatus for granular objects includes a CCD linear sensor. The CCD linear sensor comprises a plurality of light receiving elements arranged in one row each of which is capable of detecting red, green and blue wavelengths. The CCD linear sensor receives light from a granular object and a background which are irradiated by a red light source, a green light source and a blue light source. The red, green and blue light sources are switched over while the granular object is passing within an optical detection area. The CCD linear sensor receives light from the granular object in synchronization with the above switching operation of the light sources.
Abstract:
Optical navigation upon grainy surfaces whose orientation is inclined at about 45° to the X and Y axes of the navigation mechanism is enhanced by: First, detect that a spatial filter in use is inappropriate for the orientation presently occurring, and; Second, employ a different and more appropriate spatial filter subsequent to such detection. Two spatial filters have been developed that are respectively effective about the 45° and 135° inclinations of the Standard filter. The shape of a correlation surface used in the navigation process is tested for the presence of a transverse ridge in the correlation surface. This generates control metrics whose filtered excursions are tracked by a control system that changes the spatial filter in use. The control system incorporates a time constant to prevent thrashing and excessive sensitivity to isolated random variations. The direction from which illumination arrives relative to the X and Y axes affects the range of angles (relative to, say, the Y axis) that a filter is effective, by changing the apparent size and proportions of the highlights and shadows that are the perceived features ultimately navigated upon. Stable operation of the control system can be enhanced by ensuring overlap of the filters' ranges, and can be promoted by dynamically altering the direction from which illumination reaches the navigation surface, so that it corresponds to, or varies in relation with, the filter in use.
Abstract:
An improved and lower cost color spectrophotometer, especially suitable for an on-line color printer color control system, in which plural different spectra LEDs sequentially perpendicularly illuminate a common and substantially circularly illuminated color test area, which may be variably spaced and variably oriented relative to the spectrophotometer, through a common central lens system, and also the reflected illumination therefrom may be measured at 45 degrees thereto by averaging the outputs of photodetectors spaced around that circularly illuminated color test area, to provide reduced sensitivity to the variable angular or azimuthal orientation of the color test area relative to the spectrophotometer, and which photodetectors may be so illuminated by 1:1 optics for spatial insensitivity.
Abstract:
Optical navigation upon grainy surfaces whose orientation is inclined at about 45° to the X and Y axes of the navigation mechanism is enhanced by: First, detect that a spatial filter in use is inappropriate for the orientation presently occurring, and; Second, employ a different and more appropriate spatial filter subsequent to such detection. Two spatial filters have been developed that are respectively effective about the 45° and 135° inclinations of the Standard filter. The shape of a correlation surface used in the navigation process is tested for the presence of a transverse ridge in the correlation surface. This generates control metrics whose filtered excursions are tracked by a control system that changes the spatial filter in use. The control system incorporates a time constant to prevent thrashing and excessive sensitivity to isolated random variations. The direction from which illumination arrives relative to the X and Y axes affects the range of angles (relative to, say, the Y axis) that a filter is effective, by changing the apparent size and proportions of the highlights and shadows that are the perceived features ultimately navigated upon. Stable operation of the control system can be enhanced by ensuring overlap of the filters' ranges, and can be promoted by dynamically altering the direction from which illumination reaches the navigation surface, so that it corresponds to, or varies in relation with, the filter in use.