Abstract:
A surface characteristics evaluation method for evaluating a surface characteristic of a painted surface including a glittering material, including: a multi-angle condition image acquisition step S101 for acquiring a multi-angle condition image including multi-angle conditions in a continuous manner by performing an image-capturing process to capture how a reflection condition of the painted surface changes when rotating an illumination device 2 emitting light onto the painted surface, the image-capturing process being performed by the line scan camera 4 while a sample P having the painted surface is moved in a certain direction; an in-plane chromaticity distribution acquisition step S102 for acquiring an in-plane chromaticity distribution of the painted surface from the multi-angle condition image acquired; and a surface characteristics evaluation step S107 for calculating particle characteristics S as surface characteristics evaluation values of the multi-angle conditions, on the basis of the in-plane chromaticity distribution acquired.
Abstract:
Disclosed in a method, a user interface and a system for use in determining shade of a patient's tooth, wherein a digital 3D representation including shape data and texture data for the tooth is obtained. A tooth shade value for at least one point on the tooth is determined based on the texture data of the corresponding point of the digital 3D representation and on known texture values of one or more reference tooth shade values.
Abstract:
A method, a user interface and a system for use in determining shade of a patient's tooth, wherein a digital 3D representation includes shape data and texture data for the tooth is obtained. A tooth shade value for at least one point on the tooth is determined based on the texture data of the corresponding point of the digital 3D representation and on known texture values of one or more reference tooth shade values.
Abstract:
An object is to ensure clear and easy quantification of the textures such as metallic texture and shiny texture of pearl pigment and to rationalize comparison inspection between an inspection object and a reference object. A coloring inspection apparatus 1 includes a camera 2 that is configured to have three spectral sensitivities (S1(λ), S2(λ), S3(λ)) linearly and equivalently converted to a CIE XYZ color matching function, an arithmetic processing unit 3 that is configured to obtain and compute coloring data by conversion of an image which has three spectral sensitivities and is obtained by the camera 2 into tristimulus values X, Y and Z in a CIE XYZ color system, and lighting units 6 that are configured to illuminate an automobile 5 as an example of measuring object. The coloring inspection apparatus 1 computes a color distribution consistency index that represents a ratio of overlap of two xyz chromaticity histogram distributions of an inspection object Q and a reference object R, so as to inspect color.
Abstract:
The invention relates to a method for colour recipe calculation for matt colour standards with the steps: A) experimentally determining reflection spectra R(exp) of the color standard, comprising a first reflection spectrum (SPIN) and a second reflection spectrum (SPEX), with an integrating sphere color measurement instrument, wherein said first reflection spectrum (SPIN) is obtained at (A1) d/8°—geometry with the specular component included, and said second reflection spectrum (SPEX) is obtained at (A2) d/8°—geometry with the specular component excluded; B1) calculating a recipe for the matt color standard based on the experimentally determined reflection spectrum R(exp) with the specular component included, which has been corrected for the specular component, or B2) comparing the experimentally determined reflection spectrum R(exp) with the specular component included, which has been corrected for the specular component, with reflection spectra associated to color recipes of a color recipe database for glossy color shades and identifying from said color recipe database a stored reflection spectrum which comes closest to the experimentally determined reflection spectrum R(exp) of the matt color standard, as well as the associated colour recipe; C) converting reflection spectra data of the experimentally determined reflection spectra (SPIN, SPEX) of the matt colour standard to gloss values, and D) converting the gloss values obtained to the amount of matting agent (MAA) with the assistance of previously prepared calibration curves for the available colorant system.
Abstract:
A lighting device that emits illumination light from two or more angular directions onto a sample surface to be measured, an imaging optical lens, and a monochrome two-dimensional image sensor are provided. This configuration provides a method and an apparatus that take a two-dimensional image of the sample surface to be measured at each measurement wavelength and accurately measure multi-angle and spectral information on each of all pixels in the two-dimensional image in a short time. In particular, a multi-angle spectral imaging measurement method and apparatus that have improved accuracy and usefulness are provided.
Abstract:
A colour measurement device includes a measurement array (MA) which includes: a plurality of illumination arrays (20, 30, 40) for exposing a measurement spot (MS) on a measurement object (MO) to illumination light in an actual illumination direction (2, 3, 4) in each case, and a pick-up array (50) for detecting the measurement light reflected by the measurement spot (MS) in an actual observation direction (5) and for converting it into preferably spectral reflection factors; and a controller for the illumination arrays and the pick-up array and for processing the electrical signals produced by the pick-up array. The controller is embodied to process the measured reflection factors on the basis of a correction model, such that distortions in the measurement values as compared to nominal illumination and/or observation directions, caused by angular errors in the illumination arrays and/or the pick-up array, are corrected.
Abstract:
A system and method is provided for measuring and storing the paint color formula of a sample. Paint is sprayed on directional samples. The horizontal standard is measured and stored in a database. A vertical standard is measured at a plurality of locations and orientations and stored in the database.
Abstract:
A specimen measuring device includes: a light source device that irradiates a specimen surface of a specimen with illumination light from multiple illumination units at a plurality of illumination angles; a spectral camera device that is arranged above the specimen surface, spectrally separates reflected light from the specimen surface, and acquires 2D spectral information through a single image capturing operation; and a calculating unit that calculates deflection angle spectral information of the specimen surface used to measure a measurement value of a certain evaluation item of the specimen using a change in an optical geometrical condition of an illumination direction and an image capturing direction between pixels in an X axis direction and a Y axis direction of the spectral information.
Abstract:
A lighting device that emits illumination light from two or more angular directions onto a sample surface to be measured, an imaging optical lens, and a monochrome two-dimensional image sensor are provided. This configuration provides a method and an apparatus that take a two-dimensional image of the sample surface to be measured at each measurement wavelength and accurately measure multi-angle and spectral information on each of all pixels in the two-dimensional image in a short time. In particular, a multi-angle spectral imaging measurement method and apparatus that have improved accuracy and usefulness are provided.