Abstract:
Gas-filled detector for locating the presence in space of particles or radiations. The detector according to the invention comprises a curved body containing a gaseous fluid under pressure, and being provided with a window, and on the inside, an elongated element forming means of picking-up an avalanche of elements, said means being constituted by a structure of the type with at least one curved conducting strip held in such a way by the body that it projects into the enclosure and that one of its longitudinal edges is parallel to the axis of the window. The invention finds an application in X-ray crystallography.
Abstract:
A fluorescent display device having pattern display sections each composed of phosphor-coated anodes arranged in the form of a matrix, at least a filament for emitting electrons when heated, the anodes being selectively bombarded with electrons emitted from the cathode to produce a visual display, position-selecting grids provided between the filament and the pattern display sections, column-selecting grids or row-selecting grids provided opposite to the columns or rows of the anodes, and a frame member provided, on its surface facing the filament, with the position-selecting grids and on its surface facing the pattern display section with the column-selecting grids or the row-selecting grids, the frame member being made of insulating material at least where necessary. With the provision of the frame member, the device of the present invention can be assembled easily, securely and correctly, and can produce a high-quality display.
Abstract:
The invention relates to an electric filament lamp having a tubular lamp envelope provided with a pinch seal in which two series-arranged filaments are incorporated which are coupled by a brace. The brace comprises a loop in which a supporting wire is inserted. The shape of the loop and the cross-section of the brace are non-circular, for example, elongate, so as to limit the mutual rotatability.
Abstract:
A unique electron source comprises an oxide-metal composite capable of emitting electrons at ambient temperatures when subjected to an electric field. The quantity of electrons emitted depends on the electric field provided for the emitter and thermionic emission is not employed during any stage of emission. The electron source, a field effect emitter, can have more than a million metal fibers for each square centimeter of emitter surface area. The metal fibers are normally less than one micron in diameter and are uniformly embedded within an oxide insulator for emitting electrons from the ends of the metal fibers.
Abstract:
Some variations provide an electrochemical solid-state field-emission ion source comprising: (a) an ion conductor comprising a protuberance within a protuberance region, wherein the ion conductor contains mobile ions; (b) a first electrode disposed distally from the ion conductor, wherein the protuberance region is on the same side of the first electrode as the ion conductor; (c) a second electrode in contact with the ion conductor, wherein the second electrode is electrically isolated from the first electrode; and (d) an electrical insulator between the ion conductor and the first electrode. Some variations provide a method of electrochemically emitting ions from a field-emission ion source, comprising: applying an electrode potential between the first electrode and the second electrode; oxidizing or reducing the atoms in the atom reservoir, and transporting the atoms into and through the ion conductor as mobile ions; and emitting the mobile ions from the protuberance.
Abstract:
A field emission light source device, comprising: cathode plate comprising substrate and cathode conductive layer disposed on surface of substrate, and anode plate comprising base formed from transparent ceramic material and anode conductive layer disposed on one surface of base, and insulating support member by which cathode plate and anode plate are integrally fixed, and vacuum-tight chamber formed with anode plate, cathode plate and insulating support member; anode conductive layer and the cathode plate are disposed opposite each other. Because of advantages of good electrical conductivity, high light transmittance, stable electron-impact resistance performance and uniform luminescence, using transparent ceramic as the base of the anode plate in the field emission light source device can increase electron beam excitation efficiency effectively, increase light extraction efficiency of the field emission light source device, and finally increase its luminous efficiency. A manufacturing method of the field emission light source device is also provided.
Abstract:
Support electrodes are provided for individually supporting a plurality of dynodes arranged inside of a vessel of an electron tube, such as photomultiplier tube. A black spacer formed from a ceramic material is disposed between the support electrodes. The black spacers are formed with elemental composition having content of MnO suppressed to 3 wt % or less. Current leaks, which are the cause of dark current, and abnormal generations of light during photomultiplication can be reduced, thereby improving the signal-to-noise ratio of the electron tube.
Abstract:
An electrode structure used in a glow discharge system for nitride hardening of metals. The structure includes an anode plate, a cathode plate, a conductor connected to the cathode plate and an insulating dielectric shroud which surrounds the conductor. The two plates are firmly attached to the dielectric shroud so as to prevent any air gaps across which an arc may form. The shroud includes a plurality of annular grooves at one end to prevent the surface of the shroud from being covered by extraneous matter which would allow an arc to form between the plates.
Abstract:
An electrode assembly for display apparatus is disclosed. A plurality of electrodes of different rigidities are provided between a cathode and a fluorescent material through coupling spacers. Plural kinds of coupling spacers are prepared in each of which the materials of a substrate metal, an insulating layer and a glass frit are different from each other and the proportional thicknesses of these components are varied to the extent that the intervals between the electrodes of different rigidities are not changed are prepared. An electrode block is completed by arranging the electrodes and the spacers such as to cancel the rotating moment around the neutral axis of the electrode block and joining them by means of calcination. The assembling accuracy of the electrode block is heightened very advantageously for positional accuracy with respect to the fluorescent screen.