Abstract:
An electron beam recorder comprises a plurality of electron guns, a condenser lens, a device for scanning the electron beams produced by the electron guns, a device for conveying a recording medium and a device for supporting said recording medium in a recording chamber forming part of the electron beam recorder. The electron beams are modulated by the information to be recorded. The beams intersect at the center of said condenser lens so as to impinge on different parts of said recording medium. The beams are made to scan the recording medium by the scanning device, each beam exposing different areas of said recording medium.
Abstract:
Apparatus associated with a device, such as an electron microscope, in which fiber optic coupling is utilized in combination with a secondary electron conduction type camera tube for deriving an electrical signal representative of low light level emitted from the phosphor within an electron microscope.
Abstract:
The invention relates to flat panel display terminals based on cold emission cathodes.The aim of said invention is to develop a full color processing display terminal using a cold emission cathode having high emission characteristics.The inventive cold emission film cathode comprises an insulated substrate which can be made of glass and a nanocrystalline carbon film emitter placed on it, said emitter is embodied in the form of a mono layer of grains of powder of a high temperature resistive material having a grain size ranging from 10−9 to 10−4 m, said grains being covered with a nanocrystalline carbon film. The inventive flat display terminal comprises flat glass plates on one of which a system of cold emission cathodes is arranged, said cathodes are embodied in a form of busbars coated with the mono layer of grains of powder of high temperature resistive material having a grain size ranging from 10−9 to 10−4 m which are covered with a nanocrystalline carbon film. The powdery grains are made of a material belonging to the family of silicon, diamond, silicon carbide, molybdenum, tungsten, tantalum, titanium and the alloys thereof. The plates are embodied in the form of a sheet glass.At least one grid can be arranged between cathode and the anode.Said invention allows to use a cheap glass and even polymers to produce a cathode assembly of a display terminal, in addition to the use of standard processing for sealing and vacuuming of the display terminal.
Abstract:
An image-forming apparatus has a rear plate including electron-emitting devices formed thereon, a face plate including a fluorescent film formed thereon and being disposed to face the rear plate, flat plate spacers disposed between the rear plate and the face plate, and an outer frame surrounding peripheral edges of the rear plate and the face plate. Electrons emitted from the electron-emitting devices are irradiated to the fluorescent film to thereby display an image under condition where an inner space of a container constructed by the rear plate, the face plate and the outer frame is evacuated through a vent tube into a depressurized state. The vent tube is attached to a side of the outer frame that is positioned across an imaginary extension of the flat-plate spacer in the longitudinal direction thereof, or to the face plate or the rear plate in the vicinity of that side of the outer frame. With such arrangements, evacuation conductance is increased to reduce an evacuation time, and a higher vacuum level is achieved in the container so that an image can be stably displayed for a long time.
Abstract:
A laser cathode-ray tube having an electron beam source, a means for its control, and a laser target containing a supporting substrate, a cavity resonator formed by two mirrors and multilayer semiconductor structure having active and passive strained layers, whose difference in lattice parameters in a free state is up to 10% or more and which have coherent boundaries between each other in the structure.
Abstract:
A device is divulged for generating an infrared image, in which an electron beam having a section substantially equal to the area of a pixel formed from a material having high emissive power in the infrared, directly bombards this material. The energy of the beam is transformed into heat then into infrared radiation, in the material. Each pixel is supported by a slab of a material transparent to the infrared, which is heat insulating and deposited on a screen transparent to the infrared and heat conducting.
Abstract:
A light and charged particle image intensifier receives incident image conveying light or charged particles ("incident beam") and provides to data processing and video equipment signals from which the image conveyed by the incident beam can be constructed and displayed. The beam that is being processed includes visible light reflected from objects and X-ray radiation that has been passed through an object such as a human body. The image intensifier includes a scintillator and photocathode unit for converting the incident beam to photoelectrons and a charge-coupled device ("CCD") for detecting the photoelectrons and transmitting to the data processing and video equipment information relating to the quantity or energy level as well as the location of the electrons impinging on the sensing areas of the CCD. From this information, the data processing and video equipment can reconstruct the image conveyed by the incident beam. The sensitivity of the device is increased either by imposing an electric field across the photocathode and the CCD to accelerate the photoelectrons or by placing a micro channel plate ("MCP") between the photocathode and the CCD to increase the number of electrons that impinge on the CCD. Alternately, a silicon diode target can be used instead of a CCD to intercept the electrons and an electron beam gun can be used to detect the location and intensity of the charges created on the target by the impinging electrons. Finally, a grid having a number of windows can be used instead of a CCD or a silicon target to detect the location of the electron streams and a photoanode can detect their intensity.