Abstract:
A structure. The structure includes a substrate, a resistive/reflective region on the substrate, and a light source/light detecting and/or a sens-amp circuit configured to ascertain a reflectance and/or resistance change in the resistive/reflective region. The resistive/reflective region includes a material having a characteristic of the material's reflectance and/or resistance being changed due to a phase change in the material. The resistive/reflective region is configured to respond, to an electric current through the resistive/reflective region and/or a laser beam projected on the resistive/reflective region, by the phase change in the material which causes a reflectance and/resistance change in the resistive/reflective region from a first reflectance and/or resistance value to a second reflectance and/or resistance value different from the first reflectance and/or resistance value.
Abstract:
Structures and methods for forming the same. A semiconductor chip includes a semiconductor substrate and a transistor on the semiconductor substrate. The chip further includes N interconnect layers on top of the semiconductor substrate and being electrically coupled to the transistor, N being a positive integer. The chip further includes a first dielectric layer on top of the N interconnect layers, and a second dielectric layer on top of the first dielectric layer. The second dielectric layer is in direct physical contact with each interconnect layer of the N interconnect layers. The chip further includes an underfill layer on top of the second dielectric layer. The second dielectric layer is sandwiched between the first dielectric layer and the underfill layer. The chip further includes a laminate substrate on top of the underfill layer. The underfill layer is sandwiched between the second dielectric layer and the laminate substrate.
Abstract:
An electrical structure and method of forming. The electrical structure comprises an interconnect structure and a substrate. The substrate comprises an electrically conductive pad and a plurality of wire traces electrically connected to the electrically conductive pad. The electrically conductive pad is electrically and mechanically connected to the interconnect structure. The plurality of wire traces comprises a first wire trace, a second wire trace, a third wire trace, and a fourth wire trace. The first wire trace and second wire trace are each electrically connected to a first side of the electrically conductive pad. The third wire trace is electrically connected to a second side of the electrically conductive pad. The fourth wire trace is electrically connected to a third side of said first electrically conductive pad. The plurality of wire traces are configured to distribute a current.
Abstract:
An electronic device and method of packaging an electronic device. The device including: a first substrate, a second substrate and an integrated circuit chip having a first side and an opposite second side, a first set of chip pads on the first side and a second set of chip pads on the second side of the integrated circuit chip, chip pads of the first set of chip pads physically and electrically connected to corresponding substrate pads on the first substrate and chip pads of the second set of chip pads physically and electrically connected to substrate pads of the substrate.
Abstract:
Structures and methods for forming the same. A semiconductor chip includes a semiconductor substrate and a transistor on the semiconductor substrate. The chip further includes N interconnect layers on top of the semiconductor substrate and being electrically coupled to the transistor, N being a positive integer. The chip further includes a first dielectric layer on top of the N interconnect layers, and a second dielectric layer on top of the first dielectric layer. The second dielectric layer is in direct physical contact with each interconnect layer of the N interconnect layers. The chip further includes an underfill layer on top of the second dielectric layer. The second dielectric layer is sandwiched between the first dielectric layer and the underfill layer. The chip further includes a laminate substrate on top of the underfill layer. The underfill layer is sandwiched between the second dielectric layer and the laminate substrate.
Abstract:
A structure and a method for forming the same. The structure includes (a) a substrate having a top substrate surface; (b) an integrated circuit on the top substrate surface, wherein the integrated circuit includes a bond pad electrically connected to a transistor of the integrated circuit; (c) a protection ring on the top substrate surface and on a perimeter of the integrated circuit; (c) a kerf region on the top substrate surface, wherein the protection ring is sandwiched between and physically isolates the integrated circuit and the kerf region, wherein the kerf region includes a probe pad electrically connected to the bond pad, and wherein the kerf region is adapted to be destroyed by chip dicing without damaging the integrated circuit and the protection ring.