Abstract:
There is disclosed an apparatus for testing concentration-type solar cells. The apparatus includes a light source for emitting light, a focusing unit for focusing the light emitted from the light source and turning the same into a light beam, a testing unit for testing any one of solar cells of a wafer; and a wafer-positioning unit for moving the wafer horizontally and vertically, thus brining a targeted one of the solar cells into contact with the testing unit.
Abstract:
There is disclosed an apparatus for testing concentration-type solar cells. The apparatus includes a light source for emitting light, a focusing unit for focusing the light emitted from the light source and turning the same into a light beam, a testing unit for testing any one of solar cells of a wafer; and a wafer-positioning unit for moving the wafer horizontally and vertically, thus brining a targeted one of the solar cells into contact with the testing unit.
Abstract:
Embodiments of the present invention are directed to user interfaces and more particularly to techniques for providing user interface which allows users to select filtering criteria and display filtered information accordingly. In various embodiments, related information is displayed on a hierarchical chart as nodes that are connected to one another. The hierarchical chart is updated after filtering criteria are applied, and the display visibility of the nodes are changed based on the filtering results. The hierarchical relationships among the nodes are maintained before and after the filtering process. In a specific embodiment, the nodes that do not meet filtering criteria are displayed at a low visibility level on the hierarchical chart.
Abstract:
The invention provides a data writing method. In one embodiment, a data storage device comprises a flash memory. First, the flash memory is directed to read a plurality of programming voltage values for data programming. The programming voltage values are then adjusted to obtain a plurality of adjusted programming voltage values according to difference bits between a plurality of stored data patterns corresponding to the programming voltage values. The adjusted programming voltage values are then sent to the flash memory. The flash memory is then directed to perform data programming according to the adjusted programming voltage values, wherein the data programmed according to the adjusted programming voltage values has a lower error bit rate than that of the data programmed according to the programming voltage values.
Abstract:
According to one embodiment, a computer-implemented method for creating and displaying a hierarchical organization chart in a mobile application is provided. The method includes obtaining information from a database. The information represents a first node, second node, and, optionally, at least one third node. The nodes are related to each other according to a hierarchy. The method also includes displaying the information representing the first, second, and third nodes, if any, in a graphical user interface of a mobile device. The graphical user interface may include, for example, a three-level row-based chart. The information representing the first node is displayed in a first level of the chart, the information representing the second node is displayed in a second level of the chart, and the information representing the at least one third node is displayed in a third level of the chart.
Abstract:
An outer frame drainage structure of a concentrator type solar cell module, wherein, a drainage element having a predetermined height is disposed between a side board and a frame edge, hereby keeping a drainage slit between said side board and the corresponding frame edge, so that moisture will not remain inside the concentrator type solar cell module, thus the concentrator type solar cell module is able to operate in an optimal light-to-electricity conversion efficiency. In a structure mentioned above, a concave slit is formed through engaging and positioning an extended and bent positioning portion of the side board into a positioning slot of the frame edge, and the concave slit is linked to the drainage slit, thus facilitating exit of moisture and preventing intrusion of foreign objects effectively.
Abstract:
A manufacturing process of silicone glass concentrator lens, wherein, a mold is provided with a material inlet hole and an air outlet hole that are respectively used for pouring in liquid silicone and exiting air respectively. Wherein, firstly, the mold is connected to a glass carrier plate in a vertical arrangement, then pouring the liquid silicone into the mold through the material inlet hole, thus exiting the excessive air through the air outlet hole of the mold automatically. Through the application of this manufacturing process, a bubble-free silicone glass concentrator lens can be made in a fast manner without the occurrences of liquid silicone overflow, hereby reducing the production cost.
Abstract:
A nano-hetero structure is provided. The nano-hetero structure includes at least one nano-semiconductor base and a plurality of metal nanoparticles attached on the surface of nano-semiconductor base.
Abstract:
A manufacturing process of silicone glass concentrator lens, wherein, a mold is provided with a material inlet hole and an air outlet hole that are respectively used for pouring in liquid silicone and exiting air respectively. Wherein, firstly, the mold is connected to a glass carrier plate in a vertical arrangement, then pouring the liquid silicone into the mold through the material inlet hole, thus exiting the excessive air through the air outlet hole of the mold automatically. Through the application of this manufacturing process, a bubble-free silicone glass concentrator lens can be made in a fast manner without the occurrences of liquid silicone overflow, hereby reducing the production cost.
Abstract:
An outer frame drainage structure of a concentrator type solar cell module, wherein, a drainage element having a predetermined height is disposed between a side board and a frame edge, hereby keeping a drainage slit between said side board and the corresponding frame edge, so that moisture will not remain inside the concentrator type solar cell module, thus the concentrator type solar cell module is able to operate in an optimal light-to-electricity conversion efficiency. In a structure mentioned above, a concave slit is formed through engaging and positioning an extended and bent positioning portion of the side board into a positioning slot of the frame edge, and the concave slit is linked to the drainage slit, thus facilitating exit of moisture and preventing intrusion of foreign objects effectively.