Abstract:
An electronic device and manufacturing method of the electronic device are disclosed. The manufacturing method includes: providing a substrate; forming a thin film circuit on the substrate, wherein the thin film circuit comprises at least one thin film transistor and at least one conductive trace; forming at least one first connection pad on the substrate, wherein the first connection pad is electrically connected with the thin film transistor through the conductive trace; disposing the substrate on a driving circuit board, wherein the driving circuit board comprises at least one second connection pad adjacent to and corresponding to the first connection pad; and forming a conductive member covering at least a part of the second connection pad and the first connection pad, wherein the second connection pad is electrically connected with the first connection pad through the conductive member.
Abstract:
A light emitting device, a manufacturing method thereof and a display device are disclosed. The light emitting device includes a light-emitting unit, a structured light guide layer, a light guide unit and a patterned reflective layer. The light-emitting unit has a circuit substrate and multiple light emitting elements, and the light emitting elements are separately disposed on a surface of the circuit substrate. The structured light guide layer is disposed opposite the light-emitting unit, and has multiple accommodating slots and multiple light guide structures disposed between the two accommodating slots. Each accommodating slot is disposed in correspondence with each light emitting element, and the light guide structures are disposed on the bottom surface of the structured light guide layer. The light guide unit is disposed on the top surface of the structured light guide layer. The patterned reflective layer has multiple reflective patterns disposed on the light emitting surface of the light guide unit, and each reflective pattern is disposed in correspondence with each light emitting element.
Abstract:
An electronic device comprises at least one sub matrix unit, a driving circuit board, and at least one surface mount device. The sub matrix unit comprises a substrate, thin-film circuits and first connecting pads. The thin-film circuits and the first connecting pads are disposed on the operation face of the substrate. The sub matrix unit defines a loading face and comprises second connecting pads, at least one first conductive line, and at least one second conductive line all together arranged on the loading face. A second height defined between a top of the surface mount device and the loading face of the driving circuit board is no less than a first height defined between an uppermost face of the sub matrix unit and the loading face of the driving circuit board.
Abstract:
A display apparatus and manufacturing method thereof are disclosed. The manufacturing method comprises: providing at least one sub-matrix unit, wherein each thin-film circuit comprises at least one thin-film transistor and at least one conductive line, the thin-film transistor is electrically connected with the conductive line, and the first connecting pads are electrically connected with the thin-film transistor through the conductive line; disposing the sub-matrix unit on a driving circuit board, wherein the second connecting pads are disposed facing to the first connecting pads and correspondingly connected to the first connecting pads, respectively, and the scan line and the data line are electrically connected with the corresponding first connecting pads through the second connecting pads; and disposing at least one surface mount device on the driving circuit board, wherein the surface mount device is electrically connected with the corresponding first connecting pads through the second connecting pads.
Abstract:
A light emitting device, a manufacturing method thereof and a display device are disclosed. The light emitting device includes a light-emitting unit, a structured light guide layer, a light guide unit and a patterned reflective layer. The light-emitting unit has a circuit substrate and multiple light emitting elements, and the light emitting elements are separately disposed on a surface of the circuit substrate. The structured light guide layer is disposed opposite the light-emitting unit, and has multiple accommodating slots and multiple light guide structures disposed between the two accommodating slots. Each accommodating slot is disposed in correspondence with each light emitting element, and the light guide structures are disposed on the bottom surface of the structured light guide layer. The light guide unit is disposed on the top surface of the structured light guide layer. The patterned reflective layer has multiple reflective patterns disposed on the light emitting surface of the light guide unit, and each reflective pattern is disposed in correspondence with each light emitting element.
Abstract:
An electronic device and a manufacturing method thereof are disclosed. The manufacturing method of an electronic device includes following steps: forming a flexible substrate on a rigid carrier plate; forming at least a thin-film device on the flexible substrate; forming a conductive line on the flexible substrate, wherein the conductive line is electrically connected with the thin-film device; forming at least an electrical connection pad on the flexible substrate, wherein the electrical connection pad is electrically connected with the conductive line, and the thickness of the electrical connection pad is between 2 and 20 microns; disposing at least a surface-mount device (SMD) on the flexible substrate, wherein the SMD is electrically connected with the thin-film device through the electrical connection pad and the conductive line; and removing the rigid carrier plate.
Abstract:
A matrix circuit substrate, having: a substrate body, having a first surface and a second surface which are opposite each other, and at least one sidewall located between the first surface and the second surface, the sidewall having at least one recess; multiple electrodes, disposed in a crisscross arrangement on the first surface; and at least one first conductive material, disposed in the recess to correspond to at least one of the electrodes, and electrically connected to the electrode. Additionally, a display apparatus having such substrate, and to a method for manufacturing such substrate.
Abstract:
A light-emitting device is connected with an alternating current (AC) power and includes a first light-emitting module and a second light-emitting module. The first light-emitting module is electrically connected with the AC power and has a first light-emitting unit and a first bypass unit which is in parallel connection with the first light-emitting unit. The second light-emitting module is in series connection with the first light-emitting module and has a first connection terminal, a second connection terminal and n second light-emitting units which are connected in series between the first and second connection terminals. There are n−1 third connection terminals configured between the n second light-emitting units. Each of the n−1 third connection terminals and the second connection terminal are connected to the first connection terminal through a second bypass unit.