Abstract:
A method for detecting bacteria and determining the concentration thereof in a liquid sample includes the steps of taking an optical section through a container holding a volume of the liquid sample at a predetermined field of view and at a predetermined focal plane depth or angle and after a period of time has elapsed to allow non-bacteria in the sample to settle to the bottom of the container. Since bacteria auto arranges in the liquid sample, forming a lattice-like grid pattern, an optical section through the volume of auto-arranged bacteria may be used to measure the quantity of bacteria residing in that section. A container for holding the liquid sample has particular structure which aids in separating the non-bacteria from the bacteria.
Abstract:
A fluid pressure control device, including a pressurized fluid inlet, a first valve in fluid communication with the pressurized fluid inlet and controlling the flow of fluid from the pressurized fluid inlet, a first pressure measurement device detecting a fluid pressure downstream of the first valve, and a controller electrically coupled to the first valve. The first pressure measurement device causes the controller to operate the first valve such that a fluid downstream of the first valve is maintained at a substantially constant pressure.
Abstract:
Methods, devices, kits and compositions for detecting the presence or absence of one or more helminthic coproantigens in a sample are disclosed herein. The methods, devices, kits and compositions of the present invention may be used to confirm the presence or absence of roundworm, whipworm and/or hookworm in a fecal sample from a mammal and may also be able to distinguish between one or more helminth infections. Confirmation of the presence or absence of roundworm, whipworm and/or hookworm in the mammal may be made, for example, for the purpose of selecting an optimal course of treating the mammal and/or for the purpose of determining whether the mammal has been rid of the infection after treatment has been initiated.
Abstract:
Management of the health status of an animal colony using a plurality of blood collection cards and the analysis of dried blood from members of the colony that has been collected on the cards. Members of the colony may be removed from the colony as a result of the analysis.
Abstract:
A medical apparatus for analyzing fluid samples includes an outer casing, a slide loading mechanism disposed within the outer casing for loading fluid analysis slides, a slide ejecting mechanism disposed within the outer casing for ejecting fluid analysis slides, an evaporation cap opening mechanism disposed within the outer casing for opening an evaporation cap, an evaporation cap closing mechanism disposed within the outer casing for closing an evaporation cap, a drawer locking mechanism disposed within the outer casing for locking a drawer associated with the outer casing, a camera disposed within the outer casing, and a robot disposed within the outer casing. The robot is movable in three dimensions and has means for conducting three or more of the following operations: slide loading; slide ejecting; evaporation cap opening; evaporation cap closing; drawer locking; and camera manipulation.
Abstract:
Method of detecting Symmetrical dimethyl arginine (SDMA) in biological samples. SDMA analogs for generating anti-SDMA antibodies having little or no cross-reactivity with asymmetrical dimethyl arginine, arginine, and monomethylarginine. The analogs have a protected or free thiol (—SH) group or hydroxyl (—OH) group that allow them to be linked to a suitable conjugation target which can be, for example, a protein containing molecule of a label. The anti-SDMA antibodies can be used in diagnostic immunoassay for the diagnosis of SDMA associated disorders and/or diseases.
Abstract:
Management of the health status of an animal colony using a plurality of blood collection cards and the analysis of dried blood from members of the colony that has been collected on the cards. Members of the colony may be removed from the colony as a result of the analysis.
Abstract:
A method for detecting bacteria and determining the concentration thereof in a liquid sample includes the steps of taking an optical section through a container holding a volume of the liquid sample at a predetermined field of view and at a predetermined focal plane depth or angle and after a period of time has elapsed to allow non-bacteria in the sample to settle to the bottom of the container. Since bacteria auto arranges in the liquid sample, forming a lattice-like grid pattern, an optical section through the volume of auto-arranged bacteria may be used to measure the quantity of bacteria residing in that section. A container for holding the liquid sample has particular structure which aids in separating the non-bacteria from the bacteria.
Abstract:
A method for determining the amount of NT-proBNP in blood samples from felines. The method includes detecting degradation products of feline NT-proBNP by various methods, including using antibodies, kits and devices.