Abstract:
A sample cell apparatus for use in spectroscopic determination of an analyte in a body fluid sample includes a first plate member made from an optically clear material and a second plate member made from an optically clear material and opposing the first plate member. A channel extending into a surface of the first plate member and an opposing surface of the second plate member houses a floating seal. The floating seal surrounds a fluid chamber that retains a sample of body fluid for optical measurement. The fluid chamber may be opened for flushing by separating the first plate member from the second plate member. During measurements the fluid chamber is closed to define a repeatable optical path-length therethrough by urging the first plate member against the second plate member without compressing the floating seal between the first plate member and the second plate member.
Abstract:
Aspects of the present disclosure include a titration probe that mitigate the occurrences of titration probe clots. A bar such as segment of music wire, is extended across the tip of a titration probe and attached at both ends to the titration probe. The bar is configured to catch clots and prevent the clots from being collected along with a blood sample to be analyzed. The bar effectively reduces the cross sectional area of the titration probe tip.
Abstract:
An approach for detecting a transient error in a body fluid sample based on the shape of a response curve of a sensor is provided. The response curve is represented by an equation including at least one coefficient describing a curvature or slope of the response curve. The approach includes comparing the coefficient to a range of coefficients which includes coefficients of response curves corresponding to known analyte concentrations. The approach further includes detecting a transient error based on the comparison. In some examples of the approach, the comparison and detection are performed by a processing transient error detector executing computer readable instructions embodied in a non-transitory computer-readable medium. Other examples of the approach determine a concentration of the analyte based on the equation. Advantageously, various examples of the approach can expedite detection of transient errors at the time of measuring and before reporting sample result.
Abstract:
Described is an automated reagent dispensing cap and methods of use in an automated clinical analyzer for introducing one or more reagent components housed in the reagent dispensing cap into a container enclosing another reagent component with which it is combined to achieve a reagent useful for diagnostic testing.
Abstract:
A sample cell apparatus for use in spectroscopic determination of an analyte in a body fluid sample includes a first plate member and a second plate member made from an optically clear material. A channel extending into a surface of the first plate member and an opposing surface of the second plate member houses a floating seal, which surrounds a fluid sample chamber. The fluid chamber is closed to define a repeatable optical path-length therethrough by urging the first plate member against the second plate member without compressing the floating seal between the first plate member and the second plate member. The seal channel is vented to prevent fluid pressure from flexing the first plate member or the second plate member. An actuator having an extended foot portion extends over the fluid chamber to help prevent flexing of the first plate member or the second plate member.
Abstract:
Analyte content in a cell free portion of a body fluid, such as blood, is optically determined without centrifugation or other preliminary steps for separating the cell free portion from the body fluid. A channel is configured for containing a flowing sample of the body fluid along an optical boundary. The channel is configured so that a cell free layer of the fluid naturally forms along the boundary of the channel which coincides with the optical boundary. A light source is directed onto the optical boundary at an angle selected to generate total reflection from the boundary and to generate an evanescent field across the boundary in the cell free layer of fluid. A light detector is configured to detect absorption of the light in the evanescent field. The light source and light detector are matched to the wavelength range of an absorption peak of the analyte being detected.
Abstract:
The present invention pertains to a hemolysis sensor, a hemolysis sensor system and methods of utilizing the hemolysis sensor or hemolysis sensor system to monitor or detect hemolysis in a sample, such as a whole blood sample, a plasma sample, a serum sample or hemolyzed blood. The hemolysis sensor responds to extracellular hemoglobin levels, for example, extracellular hemoglobin in a whole blood sample as a method for detecting hemolysis in whole blood.
Abstract:
Compositions and methods for reducing the rate of loss of oxygen from a solution and increasing the effective life span of oxygen-containing calibration solutions.
Abstract:
An analytical instrument for the immobilization of antigens to be detected in an immunoassay using mangetizable beads. The instrument includes a probe containing magnetizable particles and a plurality of magnetic devices for applying a magnetic field gradient to the particles in the probe reservoir. The probe is movable between the plurality of magnetic devices and at least one of the probe positions may be used to immobilize the magnetic particles in the fluid medium and at least another position may be used to resuspend the particles in a fluid medium.
Abstract:
Operations performed according to the example techniques described herein include controlling a probe to pierce a stopper of a container containing a substance, where the stopper provides an air-tight seal for the container, and where the air-tight seal supports an internal pressure in the container. The operations also include detecting the internal pressure based on information from a pressure sensor; determining that the internal pressure is not at a target pressure and, based on determining that the internal pressure is not at the target pressure, controlling the probe either to aspirate air from the container or to dispense air into the container in order to move the internal pressure toward the target pressure.