Abstract:
A semiconductor memory device having an open bitline memory structure from which an edge dummy memory block is removed, the semiconductor memory device includes a memory block, an edge sense amplification block including a first sense amplifier having a first bitline, a first complementary bitline, and a first amplification circuit comprising a first transistor having a first size, a central sense amplification block including a second sense amplifier having a second bitline, a second complementary bitline, and a second amplification circuit comprising a second transistor having a second size different from the first size, a capacitor block electrically connected to the edge sense amplification block.
Abstract:
Provided is an initial driving circuit of a backlight unit having a lamp unit provided with a plurality of lamps. In the initial driving circuit, an error amplifying unit 100 detects an error voltage VERO between a feedback voltage VFB corresponding to a current flowing to the lamp unit and a preset first reference voltage Vref11. A soft signal generation unit 200 generates a soft start signal VSS of the lamp unit. A high-frequency signal driving signal generating unit 300 generates a high-frequency driving signal VHF of the of the lamp unit. A high-frequency driving termination determining unit 400 generates a high-frequency driving termination signal SHE when the error voltage VERO is equal in voltage level to the soft start signal VSS. A high-frequency driving signal blocking unit 500 blocks the high-frequency driving signal VHF in advance when the high-frequency driving termination signal SHE is inputted.
Abstract:
A semiconductor device, a parallel interface system and methods thereof are provided. The example semiconductor device may include a reference clock transmitting block generating a reference clock signal, a plurality of first transceiver blocks, each of the plurality of first transceiver blocks transmitting at least one parallel data bit signal based on one of a plurality of phase-controlled transmitting sampling clock signals and a per-pin deskew block controlling a phase of a transmitting sampling clock signal to generate the phase-controlled sampling clock signals for the respective plurality of transceiver blocks, the per-pin deskew block controlling the phase of each phase-controlled transmitting sampling clock signal based on a phase skew between a given training data bit signal, among a plurality of training data bit signals, corresponding to a given first transceiver block and the reference clock signal in a first operation mode, and based on phase skew information relating to a phase skew between a given parallel data bit signal of the at least one parallel data bit signal and the reference clock signal in a second operation mode. An example method may include reducing skew based on a comparison between a plurality of transmitted training data bit signals and a corresponding plurality of received training data bit signals in a first mode of operation and reducing skew based on received phase skew information relating to a phase skew difference between a reference signal and a parallel data bit signal in a second mode of operation.
Abstract:
A control method for a mobile terminal which connects to a router linked to an external network through at least one interface, including receiving a router advertisement message from the router through a first interface, determining whether prefix information of the received router advertisement message is identical with prefix information of a preset internet protocol (IP) configuration reuse group including the first interface, and generating an IP configuration of the first interface when the two prefix information are identical. Accordingly, at the time of a vertical handover, continuity of the A/V session can be maintained without having to use mobile IP technology.
Abstract:
Provided is an apparatus for driving a light emitting element. The apparatus includes a power unit, a light emitting element array, a constant-current circuit unit, and a voltage limiting circuit unit. The power unit supplies driving power. The light emitting element array includes a plurality of light emitting elements connected in series between an anode terminal connected to the power unit and a cathode terminal. The constant-current circuit unit maintains a constant current flowing through the light emitting element array according to a first tuning voltage. The voltage limiting circuit unit is connected between the cathode terminal of the light emitting element array and the constant-current circuit unit, and divides a total voltage applied between the cathode terminal of the light emitting element array and a ground according to a second tuning voltage to limit a voltage applied to the constant-current circuit unit below a predetermined voltage.
Abstract:
The present invention concerns a blood withdrawal device comprising a one-piece cap and lancet and a painless impulse generator. The object of the present invention is to withdraw blood painlessly and to reduce a risk of a secondary infection. In order to achieve the object of the present invention, the blood withdrawal device of the present invention comprises a cap, a hollow body and a painless blood withdrawal device. The cap comprises a one-piece cap and lancet within which a lancet is movably combined and a hollow body for a detachable connection with a painless impulse generator or a main body of a blood withdrawal device. The hollow body comprises open ends on both side of the body thereby allowing the lancet to be detachable and the movable axis to be inserted within the body. The painless impulse generator is connected with the main body of the blood withdrawal device through a means for connecting with the main body of the blood withdrawal device defined at one side of the body thereby allowing the movement of the lancet needle and the cap by the movable axis. Therefore painless blood withdrawal is possible.
Abstract:
A latency control circuit and method thereof and auto-precharge control circuit and method thereof are provided. The example latency control circuit may include a master unit activating at least one master signal based on a reference signal and an internal clock signal and a plurality of slave units receiving the at least one master signal, each of the plurality of slave units receiving a plurality of signals and outputting an output signal based at least in part upon one of the received plurality of signals. The example method of latency control may include receiving at least one master signal, the received at least one master signal activated based on a reference signal and an internal clock signal and receiving a plurality of signals and outputting an output signal based at least in part upon one of the received plurality of signals and latency information. The example auto-precharge control circuit may include a precharge command delay unit generating a plurality of first precharge command delay signals in response to an internal clock signal and a write auto-precharge command signal, at least one bank address delay unit outputting a delayed bank address signal and a precharge main signal generator outputting a precharge main signal to banks based on the delayed bank address signal. The method of performing a precharging operation with the auto-precharge control circuit may include delaying a bank address signal based on a minimum time interval between executed memory commands and outputting a precharge main signal to one or more memory banks based on the delayed bank address signal.
Abstract:
A semiconductor device, a parallel interface system and methods thereof are provided. The example semiconductor device may include a reference clock transmitting block generating a reference clock signal, a plurality of first transceiver blocks, each of the plurality of first transceiver blocks transmitting at least one parallel data bit signal based on one of a plurality of phase-controlled transmitting sampling clock signals and a per-pin deskew block controlling a phase of a transmitting sampling clock signal to generate the phase-controlled sampling clock signals for the respective plurality of transceiver blocks, the per-pin deskew block controlling the phase of each phase-controlled transmitting sampling clock signal based on a phase skew between a given training data bit signal, among a plurality of training data bit signals, corresponding to a given first transceiver block and the reference clock signal in a first operation mode, and based on phase skew information relating to a phase skew between a given parallel data bit signal of the at least one parallel data bit signal and the reference clock signal in a second operation mode. An example method may include reducing skew based on a comparison between a plurality of transmitted training data bit signals and a corresponding plurality of received training data bit signals in a first mode of operation and reducing skew based on received phase skew information relating to a phase skew difference between a reference signal and a parallel data bit signal in a second mode of operation.
Abstract:
An inverter driving circuit for an LCD is switched on/off more stably to improve heating radiation characteristics and drive efficiency. In the driving circuit, a controller supplies a first driving signal. A level shifter provides a second driving signal. A first delay circuit delays a rising section of the first driving signal to provide the first driving signal. A second delay circuit delays a falling section of the second driving signal to provide the second driving signal. Also, a power switching circuit is provided. The inverter driving circuit for the LCD, when a switching device thereof is turned off, has less current flowing in the switching device, thereby generating less heat. In addition, the inverter driving circuit prevents heat generation caused by current flowing reversely in the switching device, thereby enhancing drive efficiency.
Abstract:
A scrambling apparatus and method are provided for increasing randomness without damaging compression efficiency of total video data by selectively and randomly performing conversion when converting motion vector codes of compressed video data into other motion vector codes indicating other motion vector values, and more particularly, by performing conditional conversion only if a predetermined condition is satisfied when selective conversion of motion vector codes is performed. The scrambling apparatus includes a conversion motion vector code table generator generating a conversion motion vector code table comprising motion vector codes obtained by converting motion vector codes corresponding to motion vector values of input video data in a standard motion vector code table; and a conversion controller randomly determining whether a certain motion vector value is encoded using the conversion motion vector code table or the standard motion vector code table.