Abstract:
A lens driving apparatus installed into an optical unit, includes a lead screw rotated by a rotation of a motor, a lens holder moved reciprocally along a rotation axis line of the lead screw by a rotation of the lead screw, a guide shaft extended in parallel with the rotation axis line, and passing through the lens holder to guide, and a lens held at a free end of the lens holder in a cantilever state.
Abstract:
A constant-voltage circuit converts a voltage input to an input terminal and outputs a predetermined constant voltage from an output terminal. The constant-voltage circuit includes an output transistor to output an electrical current to the output terminal in response to a control signal, a reference voltage circuit to generate a predetermined reference voltage, a control circuit to adjust a voltage proportional to the output voltage output from the output terminal to the reference voltage output from the reference voltage circuit by controlling the output transistor and a soft start circuit including a capacitor for soft start that is charged at start-up and a current control unit to control an electrical current supplied to the reference voltage circuit. The current control unit adjusts the reference voltage to a voltage determined by the capacitor for soft start at the start-up until the reference voltage reaches a desired voltage.
Abstract:
A semiconductor device includes a substrate; a layered body formed on the substrate and including a multilayer interconnection structure, the layered body including multiple interlayer insulating films stacked in layers, the interlayer insulating films being lower in dielectric constant than a SiO2 film; a moisture resistant ring extending continuously in the layered body so as to surround a device region where an active element is formed; a protection groove part formed continuously along and outside the moisture resistant ring in the layered body so as to expose the surface of the substrate; a protection film continuously covering the upper surface of the layered body except an electrode pad on the multilayer interconnection structure, and the sidewall and bottom surfaces of the protection groove part; and an interface film including Si and C as principal components and formed between the protection film and the sidewall surfaces of the protection groove part.
Abstract:
A transceiving device includes a transmission signal generating module for generating a transmission signal that is frequency-modulated by a predetermined frequency sweep width, a transceiver module for transmitting a pulse signal having substantially the same waveform as a waveform of the transmission signal and receiving an echo signal corresponding to the transmission signal from a detection range, and a pulse-compression filter for pulse-compressing the echo signal received by the transceiver module. The pulse-compression filter has an input/output characteristic. The characteristic has, when the pulse-compression filter is inputted with an input signal having substantially the same waveform as the waveform of the transmission signal, a window function shape such that a phase spectrum of an output signal corresponding to the input signal is linear and an amplitude spectrum of the output signal does not have a frequency component other than a frequency band with which a frequency sweep is carried out.
Abstract:
An information notification apparatus is provided that receives information defined in an electronic device as information about which a notification is to be given, and notifies an information communication terminal about the information. The information notification apparatus receives information from the electronic device. Receiving the information, the apparatus checks whether or not terminal i can communicate. When the terminal can communicate, the notification apparatus notifies terminal i about the information. If the terminal cannot communicate, the received information is written into a device information buffer. This process is performed for all terminals. Accordingly, the terminals are notified about the information by the information notification apparatus.
Abstract:
The object of the present invention is to provide a new kind of silicon compound having an ester-type organic functional group and a new method for providing a T8-silsesquioxane compound having a hydroxyl group by using said silicon compound as the starting material.A silicon compound represented by formula (1) is obtained through the production process characterized by using a silicon compound represented by formula (2). wherein: in formula (1), each of seven R1 group is independently selected from the group consisting of hydrogen, alkyl, substituted or unsubstituted aryl, and substituted or unsubstituted arylalkyl and A2 is a hydroxyl-terminal organic functional group, and in formula (2), each of R1 group is the same as R1 in formula (1), and A1 is an organic functional group containing an acyloxy group.
Abstract:
A flip flop device, a semiconductor integrated circuit, and a method and apparatus for designing a semiconductor integrated circuit that prevents timing violations while preventing the circuit scale from increasing. A flip flop including first, second, and third latch circuits is stored as a standard cell in a cell library of a designing apparatus. The output of the second latch circuit becomes a first output signal of the flip flop. The second latch circuit provides the third latch circuit with a signal generated by latching a data signal with a clock signal. An output of the third latch circuit becomes a second output signal of the flip flop. When an error path having the possibility of a hold time violation is found, output of the flip flop in a former stage is changed from the first output to the second output in the error path.
Abstract:
The present invention provides a silicon compound represented by Formula (1) and a polymer obtained by using the same, and this makes it possible not only to obtain an organic-inorganic composite material having a distinct structure but also to control the structure of the above polymer as a molecular aggregate. wherein R1 is a group independently selected from hydrogen, alkyl having a carbon atom number of 1 to 40, substituted or non-substituted aryl and substituted or non-substituted arylalkyl; in this alkyl having a carbon atom number of 1 to 40, optional hydrogens may be substituted with fluorine, and optional —CH2— may be substituted with —O—, —CH═CH—, cycloalkylene or cycloalkenylene; in alkylene in this arylalkyl, optional hydrogens may be substituted with fluorine, and optional —CH2— may be substituted with —O— or —CH═CH—; and A1 is a group having an α-haloester bond.
Abstract:
The present invention provides a silicon compound represented by Formula (1) and a polymer obtained by using the same, and this makes it possible not only to obtain an organic-inorganic composite material having a distinct structure but also to control the structure of the above polymer as a molecular aggregate. wherein R1 is a group independently selected from hydrogen, alkyl having a carbon atom number of 1 to 40, substituted or non-substituted aryl and substituted or non-substituted arylalkyl; in this alkyl having a carbon atom number of 1 to 40, optional hydrogens may be substituted with fluorine, and optional —CH2— may be substituted with —O—, —CH═CH—, cycloalkylene or cycloalkenylene; in alkylene in this arylalkyl, optional hydrogens may be substituted with fluorine, and optional —CH2— may be substituted with —O— or —CH═CH—; and A1 is a group having an α-haloester bond.
Abstract:
A main wall part is provided so as to surround an integrated circuit part. A sub-wall part which is in “L” shape is provided between each corner of the main wall part and the integrated circuit part. Therefore, even if the stress is concentrated due to heat treatment or the like, the stress is dispersed to the main wall part and the sub-wall part, and hence peeling between layers and a crack are unlikely to occur, as compared with the conventional art. Further, even if the crack and the like occur at the corner, moisture from the outside hardly reaches the integrated circuit part when the main wall part and the sub-wall part are coupled to each other. For this reason, it is possible to ensure an extremely high moisture resistance.