Abstract:
An electronic device comprises a display module for displaying images, an indentify module and a substrate where the display module and the indentify module located on. When an object is pressed against the electronic device, the indentify module obtains a grayscale image of the object pressed against the electronic device to indentify the object. The indentify module comprise a first thin film transistor (TFT) array. The display module comprises a second TFT array integrated with the first TFT array to form a TFT substrate arranged on the substrate.
Abstract:
An organic light emitting diode (OLED) package includes a substrate, an OLED die mounted on the substrate and an encapsulation layer encapsulating the OLED die. The OLED package further includes a protecting layer formed on the OLED die. The encapsulation layer has a multi-layered structure and is deposited on the protecting layer. Refractive indexes of a cathode of the OLED die, the protecting layer and the encapsulation layer are gradually decreased in the sequence. A barrier layer for blocking moisture from entering the OLED package is formed on a bottom surface of the substrate by atomic layer deposition (ALD) method. The present disclosure also provides a method for manufacturing the OLED package.
Abstract:
An organic light emitting diode (OLED) display panel includes a plurality of pixels spaced from each other. Each of the pixels includes a first sub-pixel, a second sub-pixel, and a third sub-pixel. The first sub-pixel, the second sub-pixel, and the third sub-pixel of each pixel are all rhombus shaped. The first sub-pixel, the second sub-pixel, and the third sub-pixel spaced from each other by three barriers. The three barriers are connected with each other in a Y-shaped pattern. An angle defined by two adjacent barriers is about 120 degrees.
Abstract:
An electronic device includes a fingerprint sensor used for controlling the electronic device to perform predetermined functions. A plurality of reference fingerprints and a plurality of functions corresponding to the reference fingerprints are set, where each reference fingerprint corresponds to a function. When a fingerprint matches one of the reference fingerprints is input upon the condition that the electronic device is in the locked state, the electronic device performs a function corresponding to the reference fingerprint that matches the input fingerprint. A plurality of predetermined operation objects corresponding to the reference fingerprints are set, where each of the reference fingerprints corresponds to a respective predetermined operation object. When an input fingerprint matches one of the reference fingerprints is detected upon the condition that the electronic device has been unlocked, an operation object corresponding to the reference fingerprint that matches the input fingerprint is activated.
Abstract:
Method for manufacturing a thin film transistor liquid crystal display is provided. A substrate is provided. A gate electrode, a source electrode, a drain electrode, and a passivation film are formed on the substrate in sequence. The passivation film has a contact hole to expose a part of the drain electrode. A conductive layer is formed by coating nano metal material on the passivation film and in the contract hole from which the drain electrode is exposed. A pixel electrode is formed by patterning the conductive layer.
Abstract:
A display comprises a display panel and an image compensating portion. The display panel comprises a main display region and a periphery display region outside the main display region. Each of the main display region and the periphery display region respectively comprises a plurality of pixels. When a pixel of the main display region and a pixel of the periphery display region have the same original gray scale, an intensity of lights from the pixels in the periphery display region is greater than an intensity of lights from the pixels in the main display region.
Abstract:
A color conversion film includes a substrate, a number of first and second indentations defined in the substrate, and a number of quantum dot blocks received in the first and second indentations. The substrate includes a first surface and a second surface parallel to the first surface. The first indentations are defined in the first surface and extended towards an interior of the substrate. The second indentations are defined in the second surface and extended towards an interior of the substrate. The quantum dot blocks converts an incident light to a light with a specific color.
Abstract:
An image compensating portion located on a display panel includes a light incident surface, a light emitting surface, and a plurality of light guiding channels parallel with each other. The display panel includes a main display region and a periphery display region. A projection of the light emitting surface on the light incident surface is larger than an area of the light incident surface. The light guiding channel guides lights from the light incident surface to be emitted from the light emitting surface for being extended.
Abstract:
A touch display device includes a first substrate, a second substrate, a number of first sensing electrodes formed on the first substrate, a number of second sensing electrodes formed on the second substrate, a touch integrated circuit set on the first substrate, and a number of connecting wires formed on the first substrate. The touch integrated circuit includes a number of first pins correspondingly connected to the first sensing electrodes and a number of second pins correspondingly connected to the second sensing electrodes. The connecting wires correspondingly connect two opposite terminals of the first sensing electrodes with two opposite ends of the first pins. A part of connecting wires are arranged between the first pins and the second pins. The first substrate includes a shielding sheet formed in the first substrate and located above the part of the connecting wires arranged between the first pins and the second pins.
Abstract:
The present disclosure provides a liquid crystal display panel. The liquid crystal display panel includes a first substrate, a second substrate, and a liquid crystal layer. The liquid crystal layer is between the first substrate and the second substrate. The first substrate includes a first alignment layer. The second substrate includes a second alignment layer. The first alignment layer is a photo alignment layer. The second substrate is a rubbing alignment layer.