Abstract:
An improved and new process for separating a substrate from a wetted polishing pad in a CMP apparatus has been developed. Following CMP the polishing pad is wetted with a low surface tension liquid and the substrate is moved across the surface of the polishing pad to cause the interface between the substrate and the polishing pad to be wetted with the low surface tension liquid. The force required to cause separation of the substrate from the polishing pad wetted with said low surface tension liquid is reduced by a factor of about 10 to 30% and the breakage of fragile semiconductor wafer substrates during the unloading operation is markedly reduced. Suitable low surface tension liquids are water at a temperature between about 50° C. and 80° C., or solutions of water with long chain surfactants, such as poly-acrylate, poly-vinyl alcohol, butanol, pantanol or isopropol alcohol.
Abstract:
A method for forming a microelectronic layer. There is first provided a substrate. There is then formed over the substrate the microelectronic layer while employing a plasma enhanced chemical vapor deposition (PECVD) method employing a source material gas and a carrier gas, wherein there is employed a sufficiently low plasma power, a sufficiently low source material gas:carrier gas flow rate ratio and a sufficiently high carrier gas atomic mass such that the microelectronic layer is formed with enhanced film thickness uniformity. The method may be employed for forming ion implant screen layers, such as silicon oxide ion implant screen layers, with enhanced film thickness uniformity.
Abstract:
A method to prevent the accumulation of particle impurities on the surface of a semiconductor substrate that contains wolfram plugs during the process of polishing the surface of the wafer. The polishing sequence consists of three distinct polishing steps whereby the first two steps use hard polishing pads while the third step uses a soft polishing pad with the application of slurry during the third polish.
Abstract:
Slurry formulationf or CMP of organic-added low SOG dielectric was development. The SOG layers with various amount of organic content are subject to polish experiments using silica- and zirconia-based slurries with a variety of additives. The results indicate that, as the amount of organic content in SOG increases, CMP polish rate drops with silica-based KOH-added slurry. On the other hand, zirconia-based slurry could result in higher plish rate for both SOG (>400 nm/min) and thermal oxide. Polish selectivity ranging from 1.2 to 9.1 can be achieved by adding various amount of tetra-alkyl in ammonium hydroxide.
Abstract:
Methods and apparatuses for a resistive random access memory (RRAM) device are disclosed. The RRAM device comprises a bottom electrode, a resistive switching layer disposed on the bottom electrode, and a top electrode disposed on the resistive switching layer. The resistive switching layer is made of a composite of a metal, Si, and O. There may be an additional tunnel barrier layer between the top electrode and the bottom electrode. The top electrode and the bottom electrode may comprise multiple sub-layers.
Abstract:
A wafer edge trim blade includes a round blade body and at least one slot formed inward from an outside edge of the round blade body. The at least one slot is configured to remove debris generated during wafer edge trimming using the wafer edge trim blade.
Abstract:
This description relates to a sensing product formed using a substrate with a plurality of epi-layers. At least a first epi-layer has a different composition than the composition of a second epi-layer. The sensing product optionally includes at least one radiation sensing element in the second epi-layer and optionally an interconnect structure over the second epi-layer. The sensing product is formed by removing the substrate and all epi-layers other than the second epi-layer. A light incident surface of the second epi-layer has a total thickness variation of less than about 0.15 μm.
Abstract:
A method for making a conditioner disk used in a chemical mechanical polishing (CMP) process comprises applying a first layer of at least one binder over a substrate; disposing a plurality of diamond particles on the first layer of the at least one first binder at the plurality of locations; and fixing the plurality of diamond particles to the substrate by heating the substrate to a raised temperature and then cooling the substrate. The plurality of diamond particles disposed over the substrate are configured to provide a working diamond ratio higher than 50% when the conditioner disk is used in a CMP process.
Abstract:
Methods and apparatus for a backside illuminated (BSI) image sensor device are disclosed. A BSI sensor device is formed on a substrate comprising a photosensitive diode. The substrate may be thinned at the backside, then a B doped Epi-Si(Ge) layer may be formed on the backside surface of the substrate. Additional layers may be formed on the B doped Epi-Si(Ge) layer, such as a metal shield layer, a dielectric layer, a micro-lens, and a color filter.
Abstract:
Methods of thinning a plurality of semiconductor wafers and apparatuses for carrying out the same are disclosed. A grinding module within a set of grinding modules receives and grinds a semiconductor wafer. A polishing module receives the semiconductor wafer from the grinding module and polishes the wafer. The polishing module is configured to polish the semiconductor wafer in less time than the grinding module is configured to grind the corresponding wafer.