Abstract:
A sample separation apparatus includes a metering device for metering a predefined amount of fluidic sample to be separated by a sample separation apparatus, a metering path for fluidically coupling the metering device and a sample source providing fluidic sample to be metered, and a control device. The control device is configured for controlling operation of the metering device for at least partially compensating for a deviation between a target value to be metered and an actual value of an amount of fluidic sample that is metered, the deviation resulting from a thermally induced volume change in the sample separation apparatus.
Abstract:
Disclosed is a pumping apparatus (200) configured for delivering a fluid. The pumping apparatus (200) comprises a pumping chamber (220) configured for receiving one or more fluids (310, 320) in defined proportions and for further delivering the received fluids, an outlet (240), fluidically coupling to a first position (350) in the pumping chamber (220), for outleting the fluid to be delivered, and a channel (410). The channel (410) fluidically couples on one side to a second position (340) in the pumping chamber (220) and on the other side to the outlet (240), so that—in operation—a first portion of the delivered fluid as outlet at the outlet (240) is received from the first position (350) in the pumping chamber (220), and a second portion of the delivered fluid as outlet at the outlet (240) is received from the second position (340) in the pumping chamber (220). One of the first (350) and second (340) positions is a spatial position within the pumping chamber (220) where fluid components having a first property would tend to accumulate during operation of the pumping apparatus (200) if such position were not coupled to the outlet (240), with such accumulation resulting from variations in the first property.
Abstract:
A device for determining a leakage of fluid in a piston pump, wherein the piston pump comprises a piston arranged in such a manner that it can reciprocate in a piston chamber for delivering fluid, wherein the device comprises a control unit for controlling the piston in such a manner that the piston executes two piston chamber evacuation processes with different evacuation times, in each case for at least partial evacuating of fluid located in the piston chamber, and a determination unit for determining the leakage based on a comparison of fluid quantities evacuated from the piston chamber in the two piston chamber evacuation processes.
Abstract:
A fluid processing apparatus includes a first fluid processing unit and a second fluid processing unit. A fluid unit is fluidically coupled to the first fluid processing unit and includes a first buffering unit configured for buffering fluid, and/or a mask flow source configured for providing a mask fluid or a flow thereof. A first coupling point is fluidically coupled between the first fluid processing unit and the fluid unit. A modulation unit is configured, selectively, for withdrawing fluid from the first coupling point, or for transferring withdrawn fluid into the second fluid processing unit. The apparatus may be utilized for chromatography.
Abstract:
A restriction in a liquid network containing a liquid is determined by generating a vacuum bubble within the liquid network, the vacuum bubble representing a volume in which the liquid has been substantially removed. A period of time between generating the vacuum bubble and until the volume has been substantially filled with the liquid is determined. A conclusion regarding the restriction is made based on the determined period of time.
Abstract:
A sample separation apparatus includes a first-dimension separation unit for separating the fluidic sample, having a first-dimension outlet for outputting the fluidic sample or fractions thereof, and a second-dimension separation unit for further separating the fluidic sample or fractions thereof. The second-dimension separation unit has a second-dimension inlet fluidically coupled to the first-dimension outlet. A modulation unit, coupled between the first-dimension outlet and the second-dimension inlet at a first coupling point, is configured for withdrawing fluid from the first coupling point and for ejecting fluid into the first coupling point. A second-dimension fluid drive is coupled to a second coupling point located between the first-dimension outlet and the second-dimension inlet and downstream from the first coupling point. The second-dimension fluid drive is configured for generating a fluid flow for driving at least part of the fluidic sample after treatment by the first-dimension separation unit through the second-dimension separation unit.
Abstract:
A fluid valve, for a sample separation device such as for liquid chromatography, includes a rotor, a stator, and external terminals for fluidically connecting one or more components. By rotating the rotor, different fluidic coupling and/or decoupling states between components are adjustable. Ports are connectable with one or more external terminals. A first channel is formed along a first circular path. A second channel includes a first coupling point located on the first circular path and a second coupling point located on a second circular path. By rotating the rotor, a fluidic coupling between a first port and a second port can be established, by the first channel being connected with the first port and at least the first coupling point with the second channel, and by the second channel being connected at least via the second coupling point with the second port.
Abstract:
An apparatus for separating a fluidic sample includes a fluid drive arrangement including fluid drive units for driving a mobile phase along a flow path to a sample separation unit, a sample accommodation volume for accommodating the fluidic sample and selectively fluidically coupleable with or decoupleable from the flow path, and a control unit. The control unit is configured to control pressure decoupling of at least part of at least one of the fluid drive units from the flow path, and enable the partially pressure-decoupled fluid drive unit(s) to pressurize the sample accommodation volume before fluidically coupling the sample accommodation volume with the flow path and/or to de-pressurize the sample accommodation volume after fluidically coupling the sample accommodation volume with the flow path for preparing a subsequent intake of fluidic sample in the sample accommodation volume.
Abstract:
A sample separation apparatus includes a first-dimension separation unit for separating the fluidic sample, having a first-dimension outlet for outputting the fluidic sample or fractions thereof, and a second-dimension separation unit for further separating the fluidic sample or fractions thereof. The second-dimension separation unit has a second-dimension inlet fluidically coupled to the first-dimension outlet. A modulation unit, coupled between the first-dimension outlet and the second-dimension inlet at a first coupling point, is configured for withdrawing fluid from the first coupling point and for ejecting fluid into the first coupling point. A second-dimension fluid drive is coupled to a second coupling point located between the first-dimension outlet and the second-dimension inlet and downstream from the first coupling point. The second-dimension fluid drive is configured for generating a fluid flow for driving at least part of the fluidic sample after treatment by the first-dimension separation unit through the second-dimension separation unit.
Abstract:
A sampling unit for handling a sample fluid includes a sample container having a length and being configured for receiving and storing the sample fluid, and a sample segment dispatching unit configured for providing a plurality of individual sample packages of the fluidic sample, each contained in a respective volume segment along the length of the sample container, and for individually dispatching each of the plurality of individual sample packages for further processing in a fluid processing unit.