Abstract:
A power converter includes a buck converter with a low-side switch. During a discharge mode, current passes through the low-side switch to form a current loop. The low-side switch is typically closed synchronously with the opening of a high-side switch coupled to an input voltage level to the buck converter. The power converter also includes a high-side controller and a low-side controller, which together are configured to adjust the timing of the operation mode of the high-side controller between a storage mode and the discharge mode.
Abstract:
An electronic device has an I/O port, a bus connector and a transistor that is connected between the I/O port and a communications contact of the bus connector. A control circuit is connected to the transistor to maintain a gate voltage of the transistor independent of power supply voltage on a power supply contact of the connector. Other embodiments are also described and claimed.
Abstract:
A power converter includes a current-monitoring on-state controller that is configured to adjust the timing of a switch-mode voltage conversion stage of the power converter. For example, the timing of the turn-on of a MOSFET associated with a buck converter operated in a discontinuous conduction mode (e.g., quasi-resonant) can be adjusted based on a zero crossing of current through a tank inductor also associated with the buck converter. More particularly, the MOSFET may be turned on after a predetermined delay is initiated after current through the tank inductor reaches zero. The predetermined delay is based on a resonance period defined by the characteristic capacitance of the MOSFET and the inductance of the tank inductor.
Abstract:
A variable-output power converter includes a switch-mode voltage conversion stage operating in a peak-current control mode. For example, the timing of the turn-off of a MOSFET associated with a buck converter can be adjusted based on a measurement of current conducted through the by MOSFET. When the current through the MOSFET exceeds a threshold, the MOSFET is turned off, thereby defining the peak current that can be output by the variable-output power converter. The peak-current threshold can be adjusted by changing one or more characteristics of a compensation network configured to provide positive feedback to the variable-output power converter. In many examples, the peak-current threshold is adjusted using a pulse-width modulated signal.
Abstract:
The disclosed embodiments provide an AC/DC power converter that converts an AC input voltage into a DC output voltage. This AC/DC power converter includes an input rectifier stage which rectifies an AC input voltage into a first rectified voltage. The AC/DC power converter also includes a switching resonant stage which is directly coupled to the output of the input rectifier stage. The switching resonant stage converts the rectified voltage into a first high frequency AC voltage of a first amplitude. This AC/DC power converter additionally includes a transformer which is coupled to the output of the switching resonant stage and is configured to down-convert the first high frequency AC voltage into a second high frequency AC voltage of a second amplitude. Furthermore, the AC/DC power converter includes an output rectifier stage which is coupled to the output of the transformer, wherein the output rectifier stage rectifies the second high frequency AC voltage into a DC output voltage.