Abstract:
A method for correcting for hue shifts includes parameterizing the conversion of long-medium-short (LMS) spectral sensitivities of the human eye to a human observer function, and applying a non-linear transformation between the LMS and human observer function in order to correct for the hue shifts. A system for correcting for hue shifts is also provided. The system includes a controller for parameterizing the conversion of LMS spectral sensitivities of the human eye to a human observer function and applying a non-linear transformation between the LMS and human observer function in order to correct for the hue shifts in the image. The system can also include an output device for presenting the hue corrected image.
Abstract:
In one embodiment a method includes obtaining a white point correction for a display device and obtaining a chromatic correction for the display device. The method may also include generating corrected color coordinates based on the white point and chromatic corrections. The method may ensure that images that appear on a display device in a soft proofing environment will be visually equivalent to images that appear on print media.
Abstract:
Techniques for producing a color profile that characterize the color response of a color imaging device involve the use of a gray backing material. The gray backing material is placed behind a sheet of output media during measurement of color elements in a reference image formed on the output media. The gray backing material may be particularly useful for output media that is very thin or slightly transparent. In particular, unlike black or white backing materials, the gray backing material produces very little visual interference when the reference image is reproduced, providing a close visual match. Use of a gray backing material can support generation of more accurate color profiles.
Abstract:
An apparatus and method for recalibrating a multi-color imaging system are provided. The multi-color imaging system is capable of applying different colorants to a substrate based on a plurality of input color values. The input color values control amounts of the colorants to be applied to the substrate by the imaging system. A subset of the input color values is selected and used to control the imaging system to apply one or more of the different colorants to the substrate, thereby forming a plurality of different color patches on the substrate. The subset of input color values is selected such that one or more of the different color patches is formed by application of a combination of at least two of the different colorants to the substrate. Color values are measured for each of the different color patches, and compared to reference color values, representing a calibrated condition of the imaging system. An error value is calculated. The error value represents a deviation of the measured color values from the reference color values. The input color values for each colorant then are independently adjusted to reduce the error value to a predetermined degree.
Abstract:
A method of oligosaccharide sequencing in which the components are determined essentially simultaneously is disclosed which comprises a series of steps as follows:A. Placing an identifying label on the reducing terminal residue of the oligosaccharide to be sequenced,B. Dividing said oligosaccharide into a plurality of separate portions of known integer amounts,C. Treating each said portion with a different reagent mix to thereby provide a series of reaction mixtures,D. Pooling known integer amounts of the products from each separate reaction mixture to give a product pool,E. Performing an analysis on said product pool which measures the molar proportions of the reaction products, andF. Reconstructing or identifying the starting oligosaccharide from the molar prevalence of said reaction products.
Abstract:
A method for compensating for effects of illumination when comparing soft proofs to hard copy proofs viewed under non-standard illumination comprises adjusting a standard illumination display profile until estimates of device independent colors produced by the display based on the adjusted profile match the colors corresponding to the non-standard illumination within a predefined tolerance.
Abstract:
A method for matching colors including comparing the appearance of a first white color associated with a first color imaging system and a second white color associated with a second color imaging system, wherein the tristimulus values of the first and second white color are similar; determining a fixed correction to the tristimulus values of the second white color to achieve a visual match to the first white color; measuring a first set of spectral values for a first color associated with the first color imaging system; determining a first set of tristimulus values from the first set of spectral values; measuring a second set of spectral values for a second color associated with the second color imaging system; determining a second set of tristimulus values from the second set of spectral values; applying a correction to the tristimulus values of the second color; determining a difference between the tristimulus value of the first color and the corrected tristimulus value of the second color; and adjusting the second color to reduce the difference.
Abstract:
A method of characterizing an imaging system is described includes printing a color chart having a plurality of predetermined color patches; measuring the color patches to obtain colorimetric data; initializing a Neugebauer model with the Neugebauer solids of said colorimetric data; optimizing the global parameters of the Neugebauer model; optimizing the parameters associated with Demichel terms based on the Neugebauer primary associated with the Demichel term; optimizing parameters that vary with device coordinates; and creating a characterization file for the imaging system.
Abstract:
Modification of color values in a page description file can be carried out by converting implicit color commands within the page description file to explicit color commands. The color values specified by the explicit color commands within the page description file then are adjusted to calibrate an output device for enhanced color fidelity. Implicit color commands specify color values indirectly, for example, by defining color as a function of other graphic information and color reference values. Consequently, color modification prior to RIP conversion generally is difficult. Conversion and modification of explicit color values provides a higher degree of color conversion accuracy without the need for RIP conversion of the page description file.
Abstract:
A method for reproducing an image on an imaging device, including measuring a set of spectral data for each of a plurality of colors from a set of color device values with a spectral measurement device; determining a first set of tristimulus values corresponding to each set of spectral data; defining a set of human observer color matching functions for each set of tristimulus values; determining a second set of tristimulus values for each set of spectral data using the human observer color matching functions; creating a first map from device-dependent coordinates to device-independent color coordinates; creating a second map from device-independent coordinates to device-dependent color coordinates based on the first map; obtaining image data comprising device-independent color coordinates; converting the image data coordinates into device color coordinates; and reproducing the image on the color device using the device color coordinates.