Abstract:
A microelectronic assembly can include first and second microelectronic elements each embodying active semiconductor devices adjacent a front surface thereof, and having an electrically conductive pad exposed at the respective front surface. An interposer of material having a CTE less than 10 ppm/° C. has first and second surfaces attached to the front surfaces of the respective first and second microelectronic elements, the interposer having a second conductive element extending within an opening in the interposer. First and second conductive elements extend within openings extending from the rear surface of a respective microelectronic element of the first and second microelectronic elements towards the front surface of the respective microelectronic element. In one example, one or more of the first or second conductive elements extends through the respective first or second pad, and the conductive elements contact the exposed portions of the second conductive element to provide electrical connection therewith.
Abstract:
A method of forming a conductive element on a substrate and the resulting assembly are provided. The method includes forming a groove in a sacrificial layer overlying a dielectric region disposed on a substrate. The groove preferably extends along a sloped surface of the substrate. The sacrificial layer is preferably removed by a non-photolithographic method, such as ablating with a laser, mechanical milling, or sandblasting. A conductive element is formed in the groove. The grooves may be formed. The grooves and conductive elements may be formed along any surface of the substrate, including within trenches and vias formed therein, and may connect to conductive pads on the front and/or rear surface of the substrate. The conductive elements are preferably formed by plating and may or may not conform to the surface of the substrate.
Abstract:
A microelectronic unit, an interconnection substrate, and a method of fabricating a microelectronic unit are disclosed. A microelectronic unit can include a semiconductor element having a plurality of active semiconductor devices therein, the semiconductor element having a first opening extending from a rear surface partially through the semiconductor element towards a front surface and at least one second opening, and a dielectric region overlying a surface of the semiconductor element in the first opening. The microelectronic unit can include at least one conductive interconnect electrically connected to a respective conductive via and extending away therefrom within the aperture. In a particular embodiment, at least one conductive interconnect can extend within the first opening and at least one second opening, the conductive interconnect being electrically connected with a conductive pad having a top surface exposed at the front surface of the semiconductor element.
Abstract:
A microelectronic unit includes a microelectronic element, e.g., an integrated circuit chip, having a semiconductor region of monocrystalline form. The semiconductor region has a front surface extending in a first direction, an active circuit element adjacent the front surface, a rear surface remote from the front surface, and a conductive via which extends towards the rear surface. The conductive via can be insulated from the semiconductor region by an inorganic dielectric layer. An opening can extend from the rear surface partially through a thickness of the semiconductor region, with the opening and the conductive via having respective widths in the first direction. The width of the opening may be greater than the width of the conductive via where the opening meets the conductive via. A rear contact can be electrically connected to the conductive via and exposed at the rear surface for electrical connection with an external circuit element, such as another like microelectronic unit, a microelectronic package, or a circuit panel.
Abstract:
A microelectronic assembly includes two or more microelectronic packages stacked at a fine pitch, which is finer than the pitch that is possible when using solder balls for making the joint. Each stackable package desirably includes a substrate having pins projecting from one surface of the substrate and solder balls projecting from the other surface of the substrate. Each stackable package may have one or more die attached to one or more of the surfaces of the substrate. In certain embodiments, die may be attached to both surfaces of the substrate. The dies may be electrically interconnected with the substrate using wire bonds, flip chip bonding, leads and/or stud bumping. The die may be encapsulated in an encapsulated material, under-filled or glob topped. In certain preferred embodiments, the combination of the conductive post height and ball height is equal to or greater than the height of the encapsulated or molded chip structure. The combination of the conductive post height and the ball height must be at least equal to the height of the encapsulated chip structure so that the conductive elements are able to span the gap between layers of the assembly. After the tips of the conductive pads are in contact with the solder masses, the solder masses are reflowed to form a permanent electrical interconnection between the stacked microelectronic packages. During reflow, the reflowed solder will wick up around the conductive posts to form elongated solder columns. In addition, when the solder is reflowed, surface tension pulls the opposing layers of the assembly toward one another and provides a self-centering action for the conductive posts.
Abstract:
A packaged microelectronic device is provided which includes: (a) a unit having a chip with an upwardly-facing front surface and a downwardly-facing rear surface, a lid overlying at least a portion of the front surface of the chip, the lid having a top surface facing upwardly away from the chip and unit connections exposed at the top surface of the lid. At least some of the unit connections are electrically connected to the chip. The packaged microelectronic device also includes a package structure including structure defining package terminals, at least some of the package terminals being electrically connected to the chip. The package structure, the unit or both define a downwardly-facing bottom surface of the package, the terminals being exposed at the bottom surface.
Abstract:
Microelectronic packages include a microelectronic element and portions of a lead frame disposed beneath the microelectronic element. The lead frame may be laminated with a dielectric element and the resulting laminate may be punched to remove the bus bar included in the lead frame, thereby forming an in-process unit having the leads and terminals of the original lead frame attached to the dielectric element. A microelectronic element such as a semiconductor chip may be assembled with such an in-process element and, desirably, encapsulated to form a package.
Abstract:
A method of making a microelectronic assembly including a compliant interface includes providing a first support structure such as a flexible dielectric sheet having a first surface and a porous resilient layer on the first surface of the first support structure, stretching the first support structure and bonding the stretched first support structure to a ring structure. A platen is provided in engagement with a second surface of the first support structure. The first surface of a second support structure, such as a semiconductor wafer, is abutted against the porous layer and, after the abutting step, a first curable liquid is disposed between the first and second support structures and within the porous layer. The first curable liquid may be at least partially cured.
Abstract:
A semiconductor chip connection component is provided with an adhesive, desirably in a solid, non-tacky condition on its bottom surface. The adhesive may be present in a pattern covering less than all of the component bottom surface, so as to provide a void-free interface when the adhesive bonds the component to the top surface of a chip. The adhesive desirably is brought to a flowable condition by heat transferred from the chip itself. The connection component may include leads having base metal strips in a trace area underlying the top surface and noble metal portions protruding beyond an edge of the top layer. A flowable, curable material encapsulates the base metal sections. Because the base metal sections desirably are free of undercuts, the same can be encapsulated in a void-free manner during formation of the component.
Abstract:
A semiconductor chip package structure for providing a reliable interface between a semiconductor chip and a PWB to accommodate for the thermal coefficient of expansion mismatch therebetween. The interface between a chip and a PWB is comprised of a package substrate having a plurality of compliant pads defining channels therebetween. The package substrate is typically comprised of a flexible dielectric sheet that has leads and terminals on at least one surface thereof. The pads have a first coefficient of thermal expansion (“CTE”) and are comprised of a material having a fairly low modulus of elasticity. An encapsulant having a second CTE lower than the CTE of the compliant pads is disposed within the channels to form a uniform encapsulation layer. The pads are in rough alignment with the conductive terminals on the package substrate thereby allowing independent movement of the terminals during thermal cycling of the chip. The encapsulant encases the conductive leads electrically connecting the terminals to chip contacts on a face surface of the chip. The lower CTE of the encapsulant controls the flexing of the conductive leads so that the leads do not prematurely fatigue and become unreliable while the lower modulus compliant pads relieve the stress on the solder balls induced by the CTE mismatch of the chip and the PWB.