Abstract:
Deposition of conductive material on or removal of conductive material from a workpiece frontal side of a semiconductor workpiece is performed by providing an anode having an anode area which is to face the workpiece frontal side, and electrically connecting the workpiece frontal side with at least one electrical contact, outside of the anode area, by pushing the electrical contact and the workpiece frontal side into proximity with each other. A potential is applied between the anode and the electrical contact, and the workpiece is moved with respect to the anode and the electrical contact. Full-face electroplating or electropolishing over the workpiece frontal side surface, in its entirety, is thus permitted.
Abstract:
An apparatus capable of assisting in controlling an electrolyte flow and an electric field distribution used for processing a substrate is provided. It includes a rigid member having a top surface of a predetermined shape and a bottom surface. The rigid member contains a plurality of channels, each forming a passage from the top surface to the bottom surface, and each allowing the electrolyte and electric field flow therethrough. A pad is attached to the rigid member via a fastener. The pad also allows for electrolyte and electric field flow therethrough to the substrate.
Abstract:
Substantially uniform deposition of conductive material on a surface of a substrate, which substrate includes a semiconductor wafer, from an electrolyte containing the conductive material can be provided by way of a particular device which includes first and second conductive elements. The first conductive element can have multiple electrical contacts, of identical or different configurations, or may be in the form of a conductive pad, and can contact or otherwise electrically interconnect with the substrate surface over substantially all of the substrate surface. Upon application of a potential between the first and second conductive elements while the electrolyte makes physical contact with the substrate surface and the second conductive element, the conductive material is deposited on the substrate surface. It is possible to reverse the polarity of the voltage applied between the anode and the cathode so that electro-etching of deposited conductive material can be performed.
Abstract:
The present invention includes a mask plate design that includes at least one or a plurality of channels portions on a surface of the mask plate, into which electrolyte solution will accumulate when the mask plate surface is disposed on a surface of wafer, and out of which the electrolyte solution will freely flow. There are also at least one or a plurality of polish portions on the mask plate surface that allow for polishing of the wafer when the mask plate surface is disposed on a surface of wafer.
Abstract:
A layer structure usable in manufacturing an integrated circuit is made, in a single apparatus, by a particular process in which a patterned substrate is provided. An electrolyte solution, out of which a conductive material can be plated under an applied potential, is supplied over a surface of the patterned substrate, and a potential is applied so as to deposit a film of the conductive material out of the electrolyte solution and over the surface of the patterned substrate. The film of conductive material is preferably polished as it is deposited. The conductive material is then removed from field regions of the patterned substrate, while deposits of the conductive material are left in features defined in the patterned substrate. The deposits of the conductive material are then electrically isolated, resulting in the layer structure.
Abstract:
A process is described for the fabrication of submicton interconnect structures for integrated circuit chips. Void-free and seamless conductors are obtained by electroplating Cu from baths that contain additives and are conventionally used to deposit level, bright, ductile, and low-stress Cu metal. The capability of this method to superfill features without leaving voids or seams is unique and superior to that of other deposition approaches. The electromigration resistance of structures making use of CU electroplated in this manner is superior to the electromigration resistance of AlCu structures or structures fabricated using Cu deposited by methods other than electroplating.
Abstract:
A process of electrodepositing a substantially flat conductive layer on a workpiece surface is provided. In the process, various transition current densities are determined experimentally by evaluating the effects of the plating current density on gap fill profile in the smallest cavities with the largest tendency to over-plate on the substrate. After determining the transition currents on experimental wafers or dies, an electrochemical plating process is performed to apply selected transition current densities as process current densities to form a substantially flat profile over the smallest cavities.
Abstract:
The present invention provides at least one nozzle that sprays a rotating workpiece with an etchant at an edge thereof. The at least one nozzle is located in an upper chamber of a vertically configured processing subsystem that also includes mechanisms for plating, cleaning and drying in upper and lower chambers
Abstract:
The present invention provides a method and apparatus that plates/deposits a conductive material on a semiconductor substrate and then polishes the same substrate. This is achieved by providing multiple chambers in a single apparatus, where one chamber can be used for plating/depositing the conductive material and another chamber can be used for polishing the semiconductor substrate. The plating/depositing process can be performed using brush plating or electro chemical mechanical deposition and the polishing process can be performed using electropolishing or chemical mechanical polishing. The present invention further provides a method and apparatus for intermittently applying the conductive material to the semiconductor substrate and also intermittently polishing the substrate when such conductive material is not being applied to the substrate. Furthermore, the present invention provides a method and apparatus that plates/deposits and/or polishes a conductive material and improves the electrolyte mass transfer properties on a substrate using a novel anode assembly.
Abstract:
A system for optionally depositing or etching a layer of a wafer includes mask plate opposed to the wafer with the mask plate having a plurality of openings that transport a solution to the wafer. An electrode assembly has a first electrode member and a second electrode member having channels that operatively interface a peripheral and center part of the wafer. The channels transport the solution to the mask.