Abstract:
The present invention relates to methods and apparatus for plating a conductive material on a semiconductor substrate by rotating pad or blade type objects in close proximity to the substrate, thereby eliminating/reducing dishing and voids. This is achieved by providing pad or blade type objects mounted on cylindrical anodes or rollers and applying the conductive material to the substrate using the electrolyte solution disposed on or through the pads, or on the blades. In one embodiment of the invention, the pad or blade type objects are mounted on the cylindrical anodes and rotated about a first axis while the workpiece may be stationary or rotate about a second axis, and metal from the electrolyte solution is deposited on the workpiece when a potential difference is applied between the workpiece and the anode. In another embodiment of the present invention, the plating apparatus includes an anode plate spaced apart from the cathode workpiece. Upon application of power to the anode plate and the cathode workpiece, the electrolyte solution disposed in the plating apparatus is used to deposit the conductive material on the workpiece surface using cylindrical rollers having the pad or blade type objects.
Abstract:
The present invention relates to a method for fabricating high performance chip interconnects and packages by providing methods for depositing a conductive material in cavities of a substrate in a more efficient and time saving manner. This is accomplished by selectively removing portions of a seed layer from a top surface of a substrate and then depositing a conductive material in the cavities of the substrate, where portions of the seed layer remains in the cavities. Another method includes forming an oxide layer on the top surface of the substrate such that the conductive material can be deposited in the cavities without the material being formed on the top surface of the substrate. The present invention also discloses methods for forming multi-level interconnects and the corresponding structures.
Abstract:
Conductive structures in features of an insulator layer on a substrate are fabricated by a particular process. In this process, a layer of conductive material is applied over the insulator layer so that the layer of conductive material covers field regions adjacent the features and fills in the features themselves. A grain size differential between the conductive material which covers the field regions and the conductive material which fills in the features is then established by annealing the layer of conductive material. Excess conductive material is then removed to uncover the field regions and leave the conductive structures. The layer of conductive material is applied so as to define a first layer thickness over the field regions and a second layer thickness in and over the features. These thicknesses are dimensioned such that d1≦0.5d2, with d1 being the first layer thickness and d2 being the second layer thickness. Preferably, the first and second layer thicknesses are dimensioned such that d1≦0.3d2.
Abstract:
The present invention relates to a containment chamber that is used for carrying out multiple processing steps such as depositing on, polishing, etching, modifying, rinsing, cleaning, and drying a surface on the workpiece. In one example of the present invention, the chamber is used to electro chemically mechanically deposit a conductive material on a semiconductor wafer. The same containment chamber can then be used to rinse and clean the same wafer. As a result, the present invention eliminates the need for separate processing stations for depositing the conductive material and cleaning the wafer. Thus, with the present invention, costs and physical space are reduced while providing an efficient apparatus and method for carrying out multiple processes on the wafer surface using a containment chamber.
Abstract:
The methods and systems described provide for radiation assisted material deposition, removal, and planarization at a surface, edge, and/or bevel of a workpiece such as a semiconductor wafer. Exemplary processes performed on a workpiece surface having topographical features include radiation assisted electrochemical material deposition, which produces an adsorbate layer outside of the features to suppress deposition outside of the features and to encourage, through charge conservation, deposition into the features to achieve, for example, a planar surface profile. A further exemplary process is radiation assisted electrochemical removal of material, which produces an adsorbate layer in the features to suppress removal of material from the features and to encourage, through charge conservation, removal of material outside of the features so that, for example, a planar surface profile is achieved.
Abstract:
A particular anode assembly can be used to supply a solution for any of a plating operation, a planarization operation, and a plating and planarization operation to be performed on a semiconductor wafer. The anode assembly includes a rotatable shaft disposed within a chamber in which the operation is performed, an anode housing connected to the shaft, and a porous pad support plate attached to the anode housing. The support plate has a top surface adapted to support a pad which is to face the wafer, and, together with the anode housing, defines an anode cavity. A consumable anode may be provided in the anode cavity to provide plating material to the solution. A solution delivery structure by which the solution can be delivered to said anode cavity is also provided. The solution delivery structure may be contained within the chamber in which the operation is performed. A shield can also be mounted between the shaft and an associated spindle to prevent leakage of the solution from the chamber.
Abstract:
Deposition of conductive material on or removal of conductive material from a wafer frontal side of a semiconductor wafer is performed by providing an anode having an anode area which is to face the wafer frontal side, and electrically connecting the wafer frontal side with at least one electrical contact, outside of the anode area, by pushing the electrical contact and the wafer frontal side into proximity with each other. A potential is applied between the anode and the electrical contact, and the wafer is moved with respect to the anode and the electrical contact. Full-face electroplating or electropolishing over the wafer frontal side surface, in its entirety, is thus permitted.
Abstract:
Deposition of conductive material on or removal of conductive material from a workpiece frontal side of a semiconductor workpiece is performed by providing an anode having an anode area which is to face the workpiece frontal side, and electrically connecting the workpiece frontal side with at least one electrical contact, outside of the anode area, by pushing the electrical contact and the workpiece frontal side into proximity with each other. A potential is applied between the anode and the electrical contact, and the workpiece is moved with respect to the anode and the electrical contact. Full-face electroplating or electropolishing over the workpiece frontal side surface, in its entirety, is thus permitted.
Abstract:
An apparatus capable of assisting in controlling an electrolyte flow and an electric field distribution used for processing a substrate is provided. It includes a rigid member having a top surface of a predetermined shape and a bottom surface. The rigid member contains a plurality of channels, each forming a passage from the top surface to the bottom surface, and each allowing the electrolyte and electric field flow therethrough. A pad is attached to the rigid member via a fastener. The pad also allows for electrolyte and electric field flow therethrough to the substrate.
Abstract:
Substantially uniform deposition of conductive material on a surface of a substrate, which substrate includes a semiconductor wafer, from an electrolyte containing the conductive material can be provided by way of a particular device which includes first and second conductive elements. The first conductive element can have multiple electrical contacts, of identical or different configurations, or may be in the form of a conductive pad, and can contact or otherwise electrically interconnect with the substrate surface over substantially all of the substrate surface. Upon application of a potential between the first and second conductive elements while the electrolyte makes physical contact with the substrate surface and the second conductive element, the conductive material is deposited on the substrate surface. It is possible to reverse the polarity of the voltage applied between the anode and the cathode so that electro-etching of deposited conductive material can be performed.