Abstract:
A plating solution recovery apparatus for electroplating, the apparatus comprises a circulation tank; a sludge removing device; a concentrating device; an iron compound crystallizing device; an iron compound separating device; an iron compound redissolving device; an iron ion removing device; pipelines sequentially connecting the circulation tank, the sludge removing device, the concentrating device, the iron compound crystallizing device, the iron compound separating device, the iron compound redissolving device, and then the iron ion removing device in a downstream direction from a base point coincident with the circulation tank; a pipeline connecting from the iron ion removing device to the circulation tank; a pipeline connecting from the iron compound separating device to the circulation tank; and a flow path changing device connecting to the circulation tank and provided in at least one portion selected from a group of portions, respectively, between the sludge removing device and the concentrating device, between the concentrating device and iron compound crystallizing device, and between the iron compound crystallizing device and the iron compound separating device. With the apparatus being used, the plating solution can be recovered in the manner that sludge and iron are removed from the plating solution used for electroplating of a steel strip. Further, with the apparatus being used, even when stopping the operation of a device(s) related to iron removal, a continuous electroplating operation can be maintained without reducing the operation rate of the sludge removing device.
Abstract:
A water-soluble polyimide precursor, which can be suitably applied for aromatic polyimides and exhibits a low reduction in heat resistance and mechanical properties, an aqueous solution of the polyimide precursor and a polyimide obtained from the precursor. A heat-resistant fiber impregnated material and an impregnated sheet-like material are prepared by using the precursor and a laminate is prepared by employing the precursor.
Abstract:
A polyimide composite film favorably employable for preparing a heat-resistant metal foil/polyimide film composite is composed of a polyimide substrate showing a thermal expansion coefficient of 1×10−5 to 2×10−5 cm/° C. in a temperature range of 50 to 200° C. and a polyimide film which is bonded to the substrate and which is made of polyimide composed of 30-100 molar % of the recurring unit (A) and 70-0 molar % of the recurring unit (B): [each of R and R′ is a tetravalent aromatic or aliphatic group].
Abstract:
There is disclosed a method of surface mounting a connector which enables a connector to be automatically mounted while preserving reliability of soldered portions and without additionally providing a special apparatus. The connector is formed to be thick at a portion and thin at another portion with respect to an axis C.sub.1. In surface mounting the connector on the printed circuit board, a hook member is inserted into a through hole formed in advance through the printed circuit board. Then, the reflow process is carried out on the printed circuit board whereby terminals of the chips including the lead pins are soldered. The printed circuit board is reroved from a reflow furnace, and cooled, whereupon the hook member is bent toward a hooking portion side. This brings the hooking portion into engagement with the underside of the printed circuit board, whereby the connector is firmly fixed to the printed circuit board.