Abstract:
The mask blank (100) in which a phase shift film (2) made of a material containing silicon, a light shielding film (3) made of a material containing chromium, oxygen, and carbon, and a hard mask film (4) made of a material containing one or more elements selected from silicon and tantalum are provided in this order on a transparent substrate (1) is characterized in that the light shielding film (3) is a single layer film having a composition gradient portion with an increased oxygen content at a surface on the hard mask film (4) side and in a region close thereto, the light shielding film (3) has a maximum peak of N1s narrow spectrum obtained by analysis of X-ray photoelectron spectroscopy of lower detection limit or less, and a part of the light shielding film (3) excluding the composition gradient portion has a chromium content of 50 atom % or more and has a maximum peak of Cr2p narrow spectrum obtained by analysis of X-ray photoelectron spectroscopy at binding energy of 574 eV or less.
Abstract:
To provide a phase-shift mask in which the reduction in thickness of a light-shielding film is provided when a transition metal silicide-based material is used for the light-shielding film and by which the problem of ArF light fastness can be solved; and a mask blank for manufacturing the phase-shift mask.A mask blank has a structure in which a phase-shift film, an etching stopper film, a light-shielding film, and a hard mask film are laminated in said order on a transparent substrate, and at least one layer in the light-shielding film is made of a material which contains transition metal and silicon, and satisfies the conditions of Formula (1) below: CN≤9.0×10−6×RM4−1.65×10−4×RM3−7.718×10−2×RM2+3.611×RM−21.084 Formula (1) wherein RM is a ratio of the content of transition metal to the total content of transition metal and silicon in said one layer, and CN is the content of nitrogen in said one layer.
Abstract:
A mask blank, which is capable of being formed with high transfer accuracy when a hard mask film pattern is used as a mask, and even when the mask blank includes a chromium-based light shielding film. A light-semitransmissive film, a light shielding film, and a hard mask film are laminated in the stated order on a transparent substrate. The light-semitransmissive film contains silicon, and the hard mask film contains any one or both of silicon and tantalum. The light shielding film has a laminate structure of a lower layer and an upper layer, and contains chromium. The upper layer has a content of chromium of 65 at % or more, and a content of oxygen of less than 20 at %, and the lower layer has a content of chromium of less than 60 at %, and a content of oxygen of 20 at % or more.
Abstract:
Provided is a mask blank in which uniformity of the composition and optical characteristics of a phase-shift film in the in-plane direction and direction of film thickness is high, uniformity of the composition and optical characteristics of the phase-shift film between a plurality of substrates is also high, and defectivity is low even if a silicon-based material is applied to the material that forms the phase-shift film.A mask blank is provided in which a phase-shift film is provided on a transparent substrate, the phase-shift film having a function to transmit ArF exposure light therethrough at a predetermined transmittance and generate a predetermined amount of phase shift in the ArF exposure light that is transmitted therethrough, wherein the phase-shift film comprises a structure in which a low transmission layer and a high transmission layer are laminated, the low transmission layer and the high transmission layer are formed from a material consisting of silicon and nitrogen or a material consisting of silicon, nitrogen and one or more elements selected from semi-metallic elements, non-metallic elements and noble gases, and the low transmission layer has a relatively low nitrogen content in comparison with the high transmission layer.
Abstract:
Methods of manufacturing a mask blank and a transfer mask that reduce internal stress of a thin film. The methods include preparing a transparent substrate having a pair of opposing main surfaces and composed of a glass material having a hydrogen content of less than 7.4×1018 molecules/cm3, forming a thin film composed of a material containing silicon or metal on one of the main surfaces of the transparent substrate, and carrying out heating treatment or photo irradiation treatment on the transparent substrate with the thin film. The absolute value of a variation of flatness in a predetermined region, as calculated based on a difference in shape obtained from a shape of a main surface of the transparent substrate prior to forming the thin film and a shape of a main surface of the substrate exposed after removing the thin film, is not more than 100 nm.
Abstract translation:制造掩模坯料和减少薄膜内部应力的转印掩模的方法。 所述方法包括制备具有一对相对主表面并由氢含量小于7.4×1018分/ cm 3的玻璃材料构成的透明基板,在其中的一个上形成由含有硅或金属的材料构成的薄膜 透明基板的主表面,并在透明基板上进行加热处理或光照照射处理。 基于在形成薄膜之前从透明基板的主表面的形状获得的形状差计算出的预定区域中的平坦度的变化的绝对值和暴露的基板的主表面的形状 去除薄膜后,不超过100nm。
Abstract:
In the present invention, an etching stopper film (2), a light-blocking film (3) comprising a material containing one or more elements selected from among silicon and tantalum, and a hard mask film (4) are laminated in that order on a translucent substrate (1). The etching stopper film is made of a material containing chromium, oxygen and carbon, the chromium content is 50 atom % or more, the maximum peak in a N1s narrow spectrum obtained by means of analysis using X-Ray photoelectron spectroscopy is below the detection limit, and a Cr2p narrow spectrum obtained by means of analysis using X-Ray photoelectron spectroscopy has a maximum peak at a bond energy of 574 eV or less.
Abstract:
This mask blank has a structure wherein a phase shift film and a light shielding film are sequentially formed as layers in this order on a transparent substrate. The optical density of the layered structure composed of the phase shift film and the light shielding film with respect to exposure light, which is an ArF excimer laser, is 3.5 or more; and the light shielding film has a structure wherein a lower layer and an upper layer are formed as layers sequentially from the transparent substrate side. The lower layer is formed from a material wherein the total content of chromium, oxygen, nitrogen and carbon is 90 atomic % or more; and the upper layer is formed from a material wherein the total content of metals and silicon is 80 atomic % or more. The extinction coefficient kU of the upper layer for the exposure light is higher than the extinction coefficient kL of the lower layer for the exposure light.
Abstract:
In the present disclosure, an etching stopper film, a light shielding film comprising a material containing one or more elements selected from silicon and tantalum, and a hard mask film are laminated in that order on a transparent substrate. The etching stopper film is made of a material containing chromium, oxygen and carbon, the chromium content is 50 atomic % or more, the maximum peak in N1s narrow spectrum obtained by means of analysis using X-Ray photoelectron spectroscopy is below the detection limit, and Cr2p narrow spectrum obtained by means of analysis using X-Ray photoelectron spectroscopy has a maximum peak at a binding energy of 574 eV or less.
Abstract:
Provided is a mask blank for a phase shift mask including an etching stopper film. The mask blank has a structure where a transparent substrate has stacked thereon an etching stopper film and a phase shift film in this order, in which the phase shift film contains silicon and oxygen, in which the phase shift film has a refractive index n1 of 1.5 or more for light of 193 nm wavelength and an extinction coefficient k1 of 0.1 or less for light of 193 nm wavelength, in which the etching stopper film has a refractive index n2 of 2.5 or more and 3.1 or less for light of 193 nm wavelength and an extinction coefficient k2 of 0.4 or less for light of 193 nm wavelength, and the refractive index n2 and the extinction coefficient k2 satisfy at least one of a set of specified conditions.
Abstract:
A mask blank is provided which comprises a transparent substrate, an etching mask formed on the transparent substrate, and a light shielding film formed on the etching mask film. The mask blank may also include a light-semitransmissive film formed between the transparent substrate and the etching mask film. The etching mask film contains chromium and carbon, and the light shielding film contains chromium and oxygen. A C1s narrow spectrum of the etching mask film as obtained by X-ray photoelectron spectroscopy analysis has a maximum peak at a binding energy of not less than 282 eV and not more than 284 eV.